Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2021=\left|x-2010\right|+\left|x-2008\right|\)
\(2012=x-2010+x-2008\)
\(2012=2x-4018\)
\(2x=6030\)
\(x=3015\)
mk thay đề câu a để giúp một bạn nhé. còn cách làm thì tương tự thôi.
\(2012=\left|x-2010\right|+\left|x+2008\right|\)
Với \(x< -2008\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=2010-x\\\left|x+2008\right|=-2008-x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow2010-x-2008-x=2012\)
\(\Leftrightarrow2-2x=2012\)
\(\Leftrightarrow x=1006\)( loại so với điều kiện )
Với \(-2008\le x< 2010\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=2010-x\\\left|x+2008\right|=2008+x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow2010-x+2008+x=2012\)
\(\Leftrightarrow4018=2012\)( vô lý )
Với \(x\ge2010\Leftrightarrow\hept{\begin{cases}\left|x-2010\right|=x-2010\\\left|x+2008\right|=2008+x\end{cases}}\)
\(\Rightarrow2012=\left|x-2010\right|+\left|x+2008\right|\)
\(\Leftrightarrow x-2010+2008+x=2012\)
\(\Leftrightarrow2x-2=2012\)
\(\Leftrightarrow x=1007\)( loại so với điều kiện )
Vậy...
1. \(\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}=0\)
Vì \(\left(3x-5\right)^{2010}\ge0\forall x\); \(\left(y-1\right)^{2012}\ge0\forall y\); \(\left(x-z\right)^{2014}\ge0\forall x,z\)
\(\Rightarrow\left(3x-5\right)^{2010}+\left(y-1\right)^{2012}+\left(x-z\right)^{2014}\ge0\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-5=0\\y-1=0\\x-z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x=5\\y=1\\x=z\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{3}\\y=1\\z=\frac{5}{3}\end{cases}}\)
Vậy \(x=z=\frac{5}{3}\)và \(y=1\)
\(x^{x+2012}\)-\(2^{x+2012}\)-\(x^{x+2010}\)-\(2^{x+2010}\)=0
x2-22=0
\(x^2\)-4 =0
x2 =0+4=4
=> x=2 hoặc là -2
\(\Leftrightarrow\left(x-2\right)^{x+2010}\left(\left(x-2\right)^2-1\right)=0\)
ĐK :\(x-2\ge1\Leftrightarrow x\ge1\)phuương trình trở thành
- Hoặc : \(\left(x-2\right)^2-1=0\Leftrightarrow\left(x-2-1\right)\left(x-2+1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}TMDK}\)
- Hoặc : vì theo tính chất lũy thừa nên \(\left(x-2\right)^{x+2010}\ne0\)
KL nghiệm
\(\left(x-2\right)^{x+2012}-\left(x-2\right)^{x+2010}=0\)
\(\Rightarrow\left(x-2\right)^{x+2010}\left[\left(x-2\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-2\right)^{x+2010}=0\\\left(x-2\right)^2-1=0\end{matrix}\right.\)
+) \(\left(x-2\right)^{x+2010}=0\Rightarrow x-2=0\Rightarrow x=2\)
+) \(\left(x-2\right)^2-1=0\Rightarrow\left(x-2\right)^2=1\)
\(\Rightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
Vậy \(x\in\left\{2;3;1\right\}\)