K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

Xét 2 TH .

TH1 2x-1/2 nhỏ hơn 0 và 3x-1/3 lớn hơn 0

TH2: ngược lại TH1

\(\left(2x-\frac{1}{2}\right).\left(3x-\frac{1}{3}\right)< 0\)

\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{2}< 0;3x-\frac{1}{3}>0\\2x-\frac{1}{2}>0;3x-\frac{1}{3}< 0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}2x< \frac{1}{2};3x>\frac{1}{3}\\2x>\frac{1}{2};3x< \frac{1}{3}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{1}{2}:2;x>\frac{1}{3}:3\\x>\frac{1}{2}:2;x< \frac{1}{3}:3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{1}{4};x>\frac{1}{9}\\x>\frac{1}{4};x< \frac{1}{9}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{1}{9}< x< \frac{1}{4}\\\frac{1}{4}< x< \frac{1}{9}\left(loai\right)\end{cases}}\)

4 tháng 9 2019

th1\(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\)=>\(\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)(vôlis

th2 tương tự suy ra 1/9<x<1/4

4 tháng 9 2019

Xảy ra 2 TH :

TH1 : \(\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x< \frac{1}{2}\\3x>\frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>9\end{cases}}\) ( vô lí ) \(\Rightarrow\) loại

TH2 : \(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2x>\frac{1}{2}\\3x< \frac{1}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< 9\end{cases}}\) ( thỏa mãn )

Vậy : \(\frac{1}{4}< x< 9\) thì \(\left(2x-\frac{1}{2}\right)\left(3x-\frac{1}{3}\right)< 0\)

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

1 tháng 8 2019

a) \(\left|0,5x-2\right|-\left|x+\frac{1}{3}\right|=0\)

=> \(\left|0,5x-2\right|=\left|x+\frac{1}{3}\right|\)

=> \(\orbr{\begin{cases}0,5x-2=x+\frac{1}{3}\\0,5x-2=-x-\frac{1}{3}\end{cases}}\)

=> \(\orbr{\begin{cases}-0,5x=\frac{7}{3}\\1,5x=\frac{5}{3}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{14}{3}\\x=\frac{10}{9}\end{cases}}\)

b) \(2x-\left|x+1\right|=\frac{1}{2}\)

=> \(\left|x+1\right|=2x-\frac{1}{2}\) (Đk: \(2x-\frac{1}{2}\ge0\) <=> \(x\ge\frac{1}{4}\))

=> \(\orbr{\begin{cases}x+1=2x-\frac{1}{2}\\x+1=\frac{1}{2}-2x\end{cases}}\)

=> \(\orbr{\begin{cases}-x=-\frac{3}{2}\\3x=-\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{6}\end{cases}}\)

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

13 tháng 10 2020

Nhận thấy x+ 1 \(\ge\)1 > 0 \(\forall\)x

=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)

<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2=3\\3x^2=\frac{1}{0,12}\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=\frac{3}{2}\\x^2=\frac{1}{0,36}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{3}{2}}\\x=\pm\frac{1}{0,6}\end{cases}}\)

Vậy \(x\in\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}};-\frac{1}{0,6};\frac{1}{0,6}\right\}\)là giá trị cần tìm

13 tháng 10 2020

\(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)

Nhận thấy rằng x2 + 1 ≥ 1 > 0 ∀ x

=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)

<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\)

+) 2x2 - 3 = 0

<=> 2x2 = 3

<=> x2 = 3/2

<=> x = \(\pm\sqrt{\frac{3}{2}}\)

+) 3x2 - 1/0,12 = 0

<=> 3x2 - 25/3 = 0

<=> 3x2 = 25/3

<=> x2 = 25/9

<=> x = \(\pm\frac{5}{3}\)

Vậy S = { \(\pm\frac{5}{3}\)\(\pm\sqrt{\frac{3}{2}}\))

12 tháng 9 2016

Bài 1:

a) (2x-3). (x+1) < 0

=>2x-3 và x+1 ngược dấu

Mà 2x-3<x+1 với mọi x

\(\Rightarrow\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Rightarrow\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)\(\Rightarrow-1< x< \frac{3}{2}\)

b)\(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Rightarrow x-\frac{1}{2}\) và x+3 cùng dấu

Xét \(\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\)\(\Rightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\)

Xét \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)\(\Rightarrow\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

=>....

Bài 2:

\(S=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{999.1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{999}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{1001}\right)\)

\(=\frac{1}{2}\cdot\frac{998}{3003}\)

\(=\frac{499}{3003}\)

 

 

13 tháng 9 2016

tự làm nhé. bài cô Kiều cho dễ mừ :)