K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

\(\frac{x-1}{x^2-9x+20}+\frac{2x-2}{x^2-6x+8}+\frac{3x-3}{x^2-x-2}+\frac{4x-4}{x^2+6x+5}=0\)

\(\Leftrightarrow\frac{x-1}{\left(x-5\right)\left(x-4\right)}+\frac{2\left(x-1\right)}{\left(x-4\right)\left(x-2\right)}+\frac{3\left(x-1\right)}{\left(x-2\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{10}{x^2-25}\right)=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)  

PS: Điều kiện xác đinh bạn tự làm nhé 

7 tháng 1 2017

từ đề\(\Leftrightarrow\frac{x-1}{x\left(x-4\right)-5\left(x-4\right)}+\frac{2x-2}{x\left(x-2\right)-4\left(x-2\right)}+\frac{3x-3}{x\left(x+1\right)-2\left(x+1\right)}+\frac{4x-4}{x\left(x+1\right)+5\left(x+5\right)}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{\left(x-4\right)\left(x-5\right)}+\frac{2}{\left(x-2\right)\left(x-4\right)}+\frac{3}{\left(x-2\right)\left(x+1\right)}+\frac{4}{\left(x+1\right)\left(x+5\right)}=0\right)\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{x-4}-\frac{1}{x-5}+\frac{1}{x-2}-\frac{1}{x-4}+\frac{1}{x-2}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x-5}\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(\frac{2}{x-2}-\frac{2}{x-5}\right)=0\)\(\frac{2}{x-2}-\frac{2}{x-5}\)luôn khác 0 nên x-1=0 nên x=1.

Điều kiện xác định : x khác 4,5,2,-1. Do đó x=1 thỏa mãn. Vậy x=1

22 tháng 4 2020

d, (x2 + 4x + 8)2 + 3x(x2 + 4x + 8) + 2x2 = 0

Đặt x2 + 4x + 8 = t ta được:

t2 + 3xt + 2x2 = 0

\(\Leftrightarrow\) t2 + xt + 2xt + 2x2 = 0

\(\Leftrightarrow\) t(t + x) + 2x(t + x) = 0

\(\Leftrightarrow\) (t + x)(t + 2x) = 0

Thay t = x2 + 4x + 8 ta được:

(x2 + 4x + 8 + x)(x2 + 4x + 8 + 2x) = 0

\(\Leftrightarrow\) (x2 + 5x + 8)[x(x + 4) + 2(x + 4)] = 0

\(\Leftrightarrow\) (x2 + 5x + \(\frac{25}{4}\) + \(\frac{7}{4}\))(x + 4)(x + 2) = 0

\(\Leftrightarrow\) [(x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\)](x + 4)(x + 2) = 0

Vì (x + \(\frac{5}{2}\))2 + \(\frac{7}{4}\) > 0 với mọi x

\(\Rightarrow\left[{}\begin{matrix}x+4=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=-2\end{matrix}\right.\)

Vậy S = {-4; -2}

Mình giúp bn phần khó thôi!

Chúc bn học tốt!!

22 tháng 4 2020

c) \(\frac{1}{x-1}\)+\(\frac{2x^2-5}{x^3-1}\)=\(\frac{4}{x^2+x+1}\) (ĐKXĐ:x≠1)

\(\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)+\(\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}\)=\(\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

⇒x2+x+1+2x2-5=4x-4

⇔3x2-3x=0

⇔3x(x-1)=0

⇔x=0 (TMĐK) hoặc x=1 (loại)

Vậy tập nghiệm của phương trình đã cho là:S={0}

ĐKXĐ : \(\hept{\begin{cases}x-2\ne0\\3-4x\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne\frac{3}{4}\end{cases}}}\)

\(\frac{5}{x-2}+\frac{6}{3-4x}=0\)

\(\frac{5\left(3-4x\right)}{\left(x-2\right)\left(3-4x\right)}+\frac{6\left(x-2\right)}{\left(3-4x\right)\left(x-2\right)}=0\)

\(15-20x+6x-12=0\)

\(3-14x=0\Leftrightarrow14x=3\Leftrightarrow x=\frac{3}{14}\)theo ĐKXĐ : x thỏa mãn 

22 tháng 4 2020

Bài làm

a) \(\frac{3x+2}{3x-2}-\frac{6}{2+3x}=\frac{9x^2}{9x-4}\)

\(\Leftrightarrow\frac{3x+2}{3x-2}-\frac{6}{3x+2}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\frac{(3x+2)\left(3x+2\right)}{(3x-2)\left(3x+2\right)}-\frac{6\left(3x-2\right)}{(3x+2)\left(3x-2\right)}=\frac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow\left(3x+2\right)^2-\left(18x-12\right)=9x^2\)

\(\Leftrightarrow9x^2+12x+4-18x+12x-9x^2=0\)

\(\Leftrightarrow6x+4=0\)

\(\Leftrightarrow x=-\frac{4}{6}\)

\(\Leftrightarrow x=-\frac{2}{3}\)

Vậy x = -2/3 là nghiệm.

23 tháng 4 2020

@Tao Ngu :))@ 9x-4 không tách thành (3x+4)(3x-4) được đâu bạn. Chỗ đó phải là: 9x2-4

Bài thiếu đkxđ của x \(\hept{\begin{cases}3x-2\ne0\\2+3x\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}3x\ne2\\3x\ne-2\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne\frac{2}{3}\\x\ne\frac{-2}{3}\end{cases}\Leftrightarrow}x\ne\pm\frac{2}{3}}\)

11 tháng 4 2020

thanks bạn nha yeu

11 tháng 2 2020

Giải:

a) \(\frac{3x+2}{3x-2}\)62+3x=9x29x24 \(\frac{9x^2+12x+4}{\left(3x-2\right)\left(3x+2\right)}\) - \(\frac{18x-12}{\left(3x-2\right)\left(3x+2\right)}\) = \(\frac{9x^2}{9x^2-4}\) ⇔ 9x2 + 12x + 4 - 18x + 12 = 9x2 ⇔ 9x2 + 12x + 4 - 18x + 12 - 9x2 = 0

⇔ 16 + 6x = 0 ⇔ 2(8 + 3x) = 0 ⇔ 8 + 3x = 0 ⇔ x = \(\frac{-8}{3}\)

Vậy nghiệm của phương trình là x = \(\frac{-8}{3}\) .

b) \(\frac{3}{5x-1}+\frac{3}{3-5x}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\text{⇔ }\frac{-3}{1-5x}+\frac{-3}{5x-3}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\)

\(\frac{9-15x}{\left(1-5x\right)\left(5x-3\right)}+\frac{15x-3}{\left(1-5x\right)\left(5x-3\right)}=\frac{4}{\left(1-5x\right)\left(5x-3\right)}\) ⇔ 9 - 15x + 15x - 3 = 4

⇔ 8 = 4 ( vô lí)

Vậy phương trình trên vô nghiệm.

Mình chỉ làm 2 câu a, b thôi nhé! Các bài tập này cách làm giống nhau, bạn tự hoàn thành những bài còn lại nhé!

11 tháng 2 2020

ĐKXĐ đâu?