K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2016

\(\frac{64}{\left(-2\right)^x}=\left(-16\right)^2:4^3\)

<=> \(\frac{64}{\left(-2\right)^x}=4\)

<=> \(\frac{64}{\left(-2\right)^x}=\frac{64}{16}\)

<=> (-2)x = 16

<=> x = 4

14 tháng 11 2016

Bạn ơi , cái dòng thứ hai từ trên xuống ấy , tại sao lại suy ra là = 4 vậy ? Dòng thứ 3 nữa , sao lại 64/16

 

5 tháng 3 2017

\(3x^2y^4\)-\(5xy^3\)-\(\dfrac{3}{2}x^2y^4\)+\(3xy^3\)+\(2xy^3\)+1=1,5\(x^2y^4\)+1>0

5 tháng 3 2017

thank you!!!!!!yeu

12 tháng 9 2016

\(\left(x+2\right)\left(x+\frac{2}{3}\right)>0\) 

(+) \(\begin{cases}x+2>0\\x+\frac{2}{3}>0\end{cases}\)\(\Rightarrow\begin{cases}x>-2\\x>-\frac{2}{3}\end{cases}\)\(\Rightarrow x>-\frac{2}{3}\)

(+) \(\begin{cases}x+2< 0\\x+\frac{2}{3}< 0\end{cases}\)\(\Rightarrow\begin{cases}x< -2\\x< -\frac{2}{3}\end{cases}\)\(\Rightarrow x< -2\)

Vậy \(x>-\frac{2}{3}\) ; \(x< -2\)

2 tháng 11 2016

Ta có:

A =2100-299+298-297+.....+22-21

=>2A=2101-2100+299-298+.....+23-22

=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)

=>3A=2101-2

=>A=\(\frac{2^{101}-2}{3}\)

Vậy A=\(\frac{2^{101}-2}{3}\).

 

2 tháng 11 2016

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(\Rightarrow3A=2^{101}-2\)

\(\Rightarrow A=\frac{2^{101}-2}{3}\)

25 tháng 9 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a+c}{b+d}.\frac{a+c}{b+d}\)

\(\Rightarrow\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

25 tháng 9 2016

Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:

\(\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\) (1)

\(\frac{\left(a+c\right)^2}{\left(b+d\right)^2}=\frac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\frac{\left[k.\left(b+d\right)\right]^2}{\left(b+d\right)^2}=\frac{k^2.\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\) (2)

Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{\left(a+c\right)^2}{\left(b+d\right)^2}\left(đpcm\right)\)

31 tháng 7 2016

!)

=> x(x - 1)=0

=> \(\left[\begin{array}{nghiempt}x=1\\x-1=0\end{array}\right.\)

=>\(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)

Vậy đa thức có nghiệm là x=0 ; x=1

31 tháng 7 2016

1) \(x^2-x=0\)

\(\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)

b) \(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)

c)\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x-3=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)

d)\(3x^2-4x=0\)

\(\Leftrightarrow x\left(3x-4\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\3x-4=0\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=\frac{4}{3}\end{array}\right.\)

18 tháng 9 2016

\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)

\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)

\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)

\(=\left(-\frac{9}{4}\right)^2\)

\(=\frac{81}{16}\)

18 tháng 9 2016

\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)

\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)

\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)

\(=\left(\frac{-9}{4}\right)^2\)

\(=\frac{81}{16}\)

1 tháng 8 2016

Hỏi đáp Toán

1 tháng 8 2016

b. (x+1)(1/10+1/11+1/12-1/13-1/14)=0

x+1=0 (vì : 1/10+1/11+1/12-1/13-1/14>0)

x=-1

 

19 tháng 9 2016

Ta có : \(E=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|=\left(\left|x+5\right|+\left|8-x\right|\right)+\left(\left|7-x\right|+\left|x+2\right|\right)\)

                \(\ge\left|x+5+8-x\right|+\left|7-x+x+2\right|=22\)

Dấu "=" xảy ra khi \(\begin{cases}-5\le x\le8\\-2\le x\le7\end{cases}\) \(\Rightarrow-2\le x\le7\)

Vậy MIN E = 22 khi \(-2\le x\le7\)

19 tháng 9 2016

Ta thấy:\(\left|3x+\frac{1}{7}\right|\ge0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|\le0\)

\(\Rightarrow-\left|3x+\frac{1}{7}\right|+\frac{5}{3}\le\frac{5}{3}\)

\(\Rightarrow C\le\frac{5}{3}\)

Dấu= khi \(x=-\frac{1}{7}\)

Vậy MinC=\(\frac{5}{3}\) khi \(x=-\frac{1}{7}\)