Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)
.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)
.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)
.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)
.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)
.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)
.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)
.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)
.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)
.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)
.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)
.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)
.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)
.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)
.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)
.Suy ra \(x-1000=0\Leftrightarrow x=1000\)
\(\left|x-3\right|+\left|x+2\right|=7\)
-TH: \(x< -2\) thì ta được phương trình :
\(3-x+-x-2=7\)
\(\Leftrightarrow-2x=6\)
\(\Leftrightarrow x=-3\left(c\right)\)
-TH: \(-2\le x< 3\) thì ta được phương trình:
\(3-x+x+2=7\)
\(\Leftrightarrow5=7\)(vô lí nên loại)
-TH: \(x\ge3\) thì ta được phương trình:
\(x-3+x+2=7\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(c\right)\)
Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)
3a)Ta xét:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow0< x< 2\)
-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)
-TH: \(x>3\) thì \(x>0\), \(x-2>0\) và \(x-3>0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)
\(\Rightarrow x>3\)
Vậy nghiệm của phương trình là 0<x<2 và x>3
b)Dựa vào câu a ta có:
-TH: \(x< 0\) thì \(x-2< 0\) và \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)
\(\Rightarrow x< 0\)
-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)
\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)
\(\Rightarrow2< x< 3\)
Vậy nghiệm của phương trình là x<0 và 2<x<3
Không biết có đúng không nữa
a)Ta có:
\(3^x-3^{x-3}=-234\)
\(\Rightarrow3^x-3^x\cdot3^3=-234\)
\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)
\(\Rightarrow3^x\cdot\left(-26\right)=-234\)
\(\Rightarrow3^x=9\)
\(\Rightarrow x=2\)
Vậy x=2
\(\Rightarrow3^x=3^2\)
b) Ta có:
\(2^{x+1}\cdot3^x-6^x=216\)
\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)
\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)
\(\Rightarrow6^x\cdot1=216\)
\(\Rightarrow6^x=6^3\)
\(\Rightarrow x=3\)
Vậy x=3
Ta có : \(\frac{\left(4^x\right)^2}{2^x}=8\)
\(\Rightarrow4^{2x}=8.2^x\)
\(\Rightarrow4^{2x}=2^3.2^x\)
\(\Rightarrow\left(2^2\right)^{2x}=2^{x+3}\)
\(\Rightarrow2^{4x}=2^{x+3}\)
=> 4x = x + 3
=> 3x = 3
=> x = 1
Vậy x = 1.
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)
2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)
3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)
4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)
\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)
Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)
=> 3x(1 + 32 + 33) = 999
=> 3x.37 = 999
=> 3x = 999 : 37
=> 3x = 27
=> 3x = 33
=> x = 3
\(3^x+3^{x+2}+3^{2+3}=999\)
=>\(3^x.1+3^x.3^2+3^x.3^3=999\)
=>\(3^x.\left(1+9+27\right)=999\)
=>\(3^x.37=999\)
=>\(3^x=999:37\)
=>\(3^x=27=3^3\)
=>x=3