\(3^x+3^{x+2}+3^{x+3}=999\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2015

=> 3x(1 + 32 + 33) = 999

=> 3x.37 = 999

=> 3x = 999 : 37

=> 3x = 27

=> 3x = 33

=> x = 3

23 tháng 7 2015

\(3^x+3^{x+2}+3^{2+3}=999\)

=>\(3^x.1+3^x.3^2+3^x.3^3=999\)

=>\(3^x.\left(1+9+27\right)=999\)

=>\(3^x.37=999\)

=>\(3^x=999:37\)

=>\(3^x=27=3^3\)

=>x=3

14 tháng 8 2020

.a, \(\frac{x+1}{999}+\frac{x+2}{998}=\frac{x+3}{997}+\frac{x+4}{996}\)

.\(< =>\frac{x+1}{999}+1+\frac{x+2}{998}+1=\frac{x+3}{997}+1+\frac{x+4}{996}+1\)

.\(< =>\frac{x+1}{999}+\frac{999}{999}+\frac{x+2}{998}+\frac{998}{998}=\frac{x+3}{997}+\frac{997}{997}+\frac{x+4}{996}+\frac{996}{996}\)

.\(< =>\frac{x+1+999}{999}+\frac{x+2+998}{998}=\frac{x+3+997}{997}+\frac{x+4+996}{996}\)

.\(< =>\frac{x+1000}{999}+\frac{x+1000}{998}-\frac{x+1000}{997}-\frac{x+1000}{996}=0\)

.\(< =>\left(x+1000\right)\left(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\right)=0\)

.Do \(\frac{1}{999}+\frac{1}{998}-\frac{1}{997}-\frac{1}{996}\ne0\)

.Suy ra \(x+1000=0\Leftrightarrow x=-1000\)

.b, \(\frac{x+1}{1001}+\frac{x+2}{1002}=\frac{x+3}{1003}+\frac{x+4}{1004}\)

.\(< =>\frac{x+1}{1001}-1+\frac{x+2}{1002}-1=\frac{x+3}{1003}-1+\frac{x+4}{1004}-1\)

.\(< =>\frac{x+1}{1001}-\frac{1001}{1001}+\frac{x+2}{1002}-\frac{1002}{1002}=\frac{x+3}{1003}-\frac{1003}{1003}+\frac{x+4}{1004}-\frac{1004}{1004}\)

.\(< =>\frac{x+1-1001}{1001}+\frac{x+2-1002}{1002}=\frac{x+3-1003}{1003}+\frac{x+4-1004}{1004}\)

.\(< =>\frac{x-1000}{1001}+\frac{x+1000}{1002}-\frac{x+1000}{1003}-\frac{x+1000}{1004}=0\)

.\(< =>\left(x-1000\right)\left(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\right)=0\)

.Do \(\frac{1}{1001}+\frac{1}{1002}-\frac{1}{1003}-\frac{1}{1004}\ne0\)

.Suy ra \(x-1000=0\Leftrightarrow x=1000\)

14 tháng 8 2020

cảm ơn

14 tháng 9 2019

\(\left|x-3\right|+\left|x+2\right|=7\)

-TH: \(x< -2\) thì ta được phương trình :

\(3-x+-x-2=7\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\left(c\right)\)

-TH: \(-2\le x< 3\) thì ta được phương trình:

\(3-x+x+2=7\)

\(\Leftrightarrow5=7\)(vô lí nên loại)

-TH: \(x\ge3\) thì ta được phương trình:

\(x-3+x+2=7\)

\(\Leftrightarrow2x=8\)

\(\Leftrightarrow x=4\left(c\right)\)

Vậy nghiệm của phương trình là \(S=\left\{-3;4\right\}\)

14 tháng 9 2019

3a)Ta xét:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(0< x< 2\) thì \(x>0\), \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\left(c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2< 0\\x-3< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow0< x< 2\)

-TH: \(2< x< 3\) thì \(x>0\), \(x-2>0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\left(l\right)\)

-TH: \(x>3\) thì \(x>0\), \(x-2>0\)\(x-3>0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)>0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x-2>0\\x-3>0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x>3\end{matrix}\right.\)

\(\Rightarrow x>3\)

Vậy nghiệm của phương trình là 0<x<2 và x>3

b)Dựa vào câu a haha ta có:

-TH: \(x< 0\) thì \(x-2< 0\)\(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\\x< 3\end{matrix}\right.\)

\(\Rightarrow x< 0\)

-TH:\(2< x< 3\) thì \(x>0\), \(x-2>0\), \(x-3< 0\)

\(\Rightarrow x\left(x-2\right)\left(x-3\right)< 0\)

\(\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\\x< 3\end{matrix}\right.\)

\(\Rightarrow2< x< 3\)

Vậy nghiệm của phương trình là x<0 và 2<x<3

Không biết có đúng không nữa hiu

30 tháng 11 2016

a)Ta có:

\(3^x-3^{x-3}=-234\)

\(\Rightarrow3^x-3^x\cdot3^3=-234\)

\(\Rightarrow3^x\cdot\left(1-3^3\right)=-234\)

\(\Rightarrow3^x\cdot\left(-26\right)=-234\)

\(\Rightarrow3^x=9\)

\(\Rightarrow x=2\)

Vậy x=2

\(\Rightarrow3^x=3^2\)

30 tháng 11 2016

b) Ta có:

\(2^{x+1}\cdot3^x-6^x=216\)

\(\Rightarrow2^x\cdot2\cdot3^x-2^x\cdot3^x=216\)

\(\Rightarrow\left(2^x\cdot3^x\right)\cdot\left(2-1\right)=216\)

\(\Rightarrow6^x\cdot1=216\)

\(\Rightarrow6^x=6^3\)

\(\Rightarrow x=3\)

Vậy x=3

16 tháng 9 2017

Ta có : \(\frac{\left(4^x\right)^2}{2^x}=8\)

\(\Rightarrow4^{2x}=8.2^x\)

\(\Rightarrow4^{2x}=2^3.2^x\)

\(\Rightarrow\left(2^2\right)^{2x}=2^{x+3}\)

\(\Rightarrow2^{4x}=2^{x+3}\)

=> 4x = x + 3

=> 3x = 3

=> x = 1

Vậy x = 1. 

5 tháng 6 2019

1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)

\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu

\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)

\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)

Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)

5 tháng 6 2019

Bài 1b) có thể giải gọn hơn nhuư thế này

2 tháng 2 2019

Nhác quá mấy bài này hỏi làm j

23 tháng 7 2019

1) \(\left|x\right|< 4\Leftrightarrow-4< x< 4\)

2) \(\left|x+21\right|>7\Leftrightarrow\orbr{\begin{cases}x+21>7\\x+21< -7\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>-14\\x< -28\end{cases}}\)

3) \(\left|x-1\right|< 3\Leftrightarrow-3< x-1< 3\Leftrightarrow-2< x< 4\)

4) \(\left|x+1\right|>2\Leftrightarrow\orbr{\begin{cases}x+1>2\\x+1< -2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>1\\x< -3\end{cases}}\)

23 tháng 7 2019

\(\left|x+\frac{1}{2}\right|+\left|3-y\right|=0\)

Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\\\left|3-y\right|\ge0\end{cases}}\Rightarrow\)\(\left|x+\frac{1}{2}\right|+\left|3-y\right|\ge0\)

Dấu "="\(\Leftrightarrow\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|3-y\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=3\end{cases}}\)