Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=16 nên
17=x+17
=>B=x4-(x+1)x3+(x+1)x2-(x-1)x+20
=x4-x4-x3+x3+x2-x2-x+20
=-x+20
thay x=16 ta được
B=-16+20=4
vậy B=4 tại x=16
Cô hướng dẫn nhé.
1. Nhẩm nghiệm để suy ra nhân tử .
\(27x^3-27x^2+18x-4=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
Xem lại đề câu b, nếu ko ta dùng công thức Cardano.
2.
a. Đặt ẩn phụ.
b. \(B=\left(x+y\right)^2-\left(x+y\right)-12\). Sau đó lại đặt ẩn phụ.
c. Đặt \(x^2+x+1=t\)
d. Ghép: \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)+24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)+24\)
Đặt \(x^2+7x+10=t\)
2a. Đặt \(x^2+x=t\Rightarrow A=t^2-2t-15=t^2-5t+3t-15=\left(t-5\right)\left(t+3\right)\)
Quay lại biến x , ta có \(\left(x^2+x-5\right)\left(x^2+x+3\right)\)
Đặt \(\left|x-4\right|=t\left(t>0\right)\), khi đó ta có \(B=t\left(2-t\right)=-t^2+2t=1-\left(t-1\right)^2\le1\)
Vậy giá trị lớn nhất của B là 1 khi \(t=\left|x-4\right|=1\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}\)
Chúc em học tốt :)
Cô làm cách 2 nhé:
Với \(x\ge4\), pt trở thành: \(\left(x-4\right)\left[2-\left(x-4\right)\right]=\left(x-4\right)\left(6-x\right)=-x^2+10x-24=1-\left(x-5\right)^2\)
Do \(\left(x-5\right)^2\ge0\) nên \(-\left(x-5\right)^2\le0\Rightarrow1-\left(x-5\right)^2\le1\)
Với \(x< 4\), pt trở thành : \(\left(4-x\right)\left[2-\left(4-x\right)\right]=\left(4-x\right)\left(x-2\right)=-x^2+6x-8\)
\(=-x^2+6x-9+1=1-\left(x-3\right)^2\le1\)
Vậy GTLN của B là 1 khi x = 3 hoặc x = 5.
\(3-\left(x-1\right)=2-2\left(x-3\right)\)
\(3-x+1=2-2x+6\)
\(4-x=8-2x\)
\(4-x-8+2x=0\)
\(x-4=0\)
\(x=4\)
3-(x-1)=2-2(x-3)=>3-2=x-1-2(x-3)=>1=x-1-2x+6
=>1=-x+5=>-x=1-5=-4=>x=4
Chúc bạn học tốt nhớ k cho mik nha.
\(\Leftrightarrow-12x+17x=20+2\\ \Leftrightarrow5x=22\\ \Leftrightarrow x=\dfrac{22}{5}\)