Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-2\right|+\left|x-5\right|=3\)
\(\Rightarrow x-2+x-5=3\)
\(\Rightarrow2x-7=3\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
\(\left|x-2\right|+\left|x-5\right|=3\)
\(x-2+x-5=3\)
\(2x-7=3\)
\(5x=10\)
\(x=2\)
Đặt A = (x-2)2.(x+1/3).(x-1)
Ta có bảng xét dấu :
x | \(-\frac{1}{3}\) | 1 | 2 | |||
(x-2)2 | + | + | + | + | + | 0 |
x + \(\frac{1}{3}\) | + | 0 | - | + | + | + |
x - 1 | - | - | - | 0 | + | + |
A | - | 0 | + | 0 | + | 0 |
Vậy để A < 0 <=> x < \(-\frac{1}{3}\)
Để M dương thì \(\hept{\begin{cases}x+1\ne0\\x+2\ne0\end{cases}}\Leftrightarrow\begin{cases}x\ne-1\\x\ne-2\end{cases}\)và x + 1 và x + 2 cùng dấu
TH1: x + 1 và x + 2 cùng âm
\(\Rightarrow\hept{\begin{cases}x+1< 0\\x+2< 0\end{cases}}\Leftrightarrow x< -1\)
TH2: x + 1 và x + 2 cùng dương
\(\Rightarrow\hept{\begin{cases}x+1>0\\x+2>0\end{cases}}\Rightarrow x>-2\)
Vậy x < -1 hoặc x > -2 để M dương.
a)/x-2/+/x-5/=3
TH1:
x-2+x-5=3
x+x-2-5=3
2x-7=3
2x=3+7
2x=10
x=10:2
x=5
TH2
x-2+x-5= -3
x+x-2-5=-3
2x-7=-3
2x=-3+7
2x=4
x=4:2
x=2
Vậy x\(\in\){5;2}
Ta có bảng xét dấu:
2 3 4 x - 2 x - 3 x - 4 0 0 0 - - - - - - + + + + + +
Với \(x< 2;pt\Leftrightarrow2-x+3-x+4-x=2\)
\(\Leftrightarrow7-3x=0\Leftrightarrow x=\frac{7}{3}\left(l\right)\)
Với \(2\le x< 3;pt\Leftrightarrow x-2+3-x+4-x=2\)
\(\Leftrightarrow5-x=2\Leftrightarrow x=3\left(l\right)\)
Với \(3\le x< 4;pt\Leftrightarrow x-2+x-3+4-x=2\)
\(\Leftrightarrow x-1=2\Leftrightarrow x=3\left(tm\right)\)
Với \(x\ge4;pt\Leftrightarrow x-2+x-3+x-4=2\)
\(\Leftrightarrow3x-11=0\Leftrightarrow x=\frac{11}{3}\left(l\right)\)
Vậy pt có nghiệm duy nhất x = 3.
Bài đó không cần dùng bảng xét dấu cũng được mà bạn
M=\(\left(x+3\right)\left(x+4\right)\)
\(\text{M dương }\Leftrightarrow\text{M}\ge0\Leftrightarrow\left(x+3\right)\left(x+4\right)\ge0\)
\(\text{TH1}:\)
\(\hept{\begin{cases}x+3\ge0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-3\\x>-4\end{cases}}}\Rightarrow x\ge3\)
\(\text{TH2}:\)
\(\hept{\begin{cases}x+3\le0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-3\\x< -4\end{cases}}}\Rightarrow x\le3\)
\(\text{Vậy với }x\ge3\text{ hoặc }x\le3\text{ thì M dương }\)
Bài này không cần dùng bảng xét dấu đâu bạn. Bạn lập luận như sau:
M dương khi: (x+3) và (x+4) cùng dấu
TH1: (x+3) > 0 => x > -3
(x+4) > 0 => x > -4
=> x > -3
TH2: (x+3) < 0 => x < -3
(x+4) < 0 => x < -4
=> x < -4
Vậy x > -3 hoặc x < -4
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x+3>0\:\Leftrightarrow\:x>-3\\x+4>0\:\Leftrightarrow\:x>-4\end{cases}}\\\hept{\begin{cases}x+3< 0\:\Leftrightarrow\:x< -3\\x+4< 0\:\Leftrightarrow\:x< -4\end{cases}}\end{cases}}\Rightarrow\:\)