Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^4-x^3-2x^2-x^3+x^2+2x-x^2+x+2=0\)
\(\Leftrightarrow x^2\left(x^2-x-2\right)-x\left(x^2-x-2\right)-1\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left(x^2-x-1\right)\left(x^2-x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2-x-2=0\end{matrix}\right.\)
Ta có: \(VT=\left(x^4+x^3\right)-\left(3x^3+3x^2\right)+\left(x^2+x\right)+2\left(x+1\right)\)
\(=x^3\left(x+1\right)-3x^2\left(x+1\right)+x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-2x^2-x^2+2x-x+2\right)\)
\(=\left(x+1\right)\left[x^2\left(x-2\right)-x\left(x-2\right)-\left(x-2\right)\right]\)
\(=\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)\)
Do vậy pt tương đương với \(\left(x+1\right)\left(x-2\right)\left(x^2-x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\) . Giải cái ngoặc cuối cùng: \(x^2-x-1=0\Leftrightarrow\left[{}\begin{matrix}x=\frac{1+\sqrt{5}}{2}\\x=\frac{1-\sqrt{5}}{2}\end{matrix}\right.\)
a ) \(3x\left(x-1\right)-x\left(3x-2\right)=5\)
\(\Leftrightarrow3x^2-3x-3x^2+2x=5\)
\(\Leftrightarrow-x=5\)
\(\Leftrightarrow x=-5\)
Vậy phương trình có nghiệm x = - 5 .
a)x+x2-x3-x4=0
<=>x(x+1)-x3(x+1)=0
<=>x(x+1)(1-x2)=0
<=>x(x+1)(x+1)(x-1)=0
<=>x(x+1)2(x-1)=0
<=>x=0
hoặc (x+1)2=0<=>x=-1
hoặc x-1=0<=>x=1
b)sửa đề 1 chút!!!
2x3+3x2+2x+3=0
<=>x2(2x+3)+(2x+3)=0
<=>(2x+3)(x2+1)=0
<=>2x+3=0(do x2+1>0 với mọi x)
<=>2x=-3
<=>x=-1,5
c)x2-x-12=0
<=>(x2-4x)+(3x-12)=0
<=>(x(x-4)+3(x-4)=0
<=>(x-4)(x+3)=0
<=>x-4=0<=>x=4
Hoặc x+3=0<=>x=-3
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
\(x^4-2x^3-2x^2+3x+2=0\)
\(\Leftrightarrow x^4-2x^3-2x^2+4x-x+2=0\)
\(\Leftrightarrow\left(x^4-2x^3\right)-\left(2x^2-4x\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3\left(x-2\right)-2x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-2x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^3-x-x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^3-x\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x^2-1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2-x\right)\left(x+1\right)-\left(x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2-x-1\right)=0\)
Đến đây ez r