Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)
\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(\left(-3\right)\left(4x+5\right)=9\)
\(4x+5=\frac{9}{-3}\)
\(4x+5=-3\)
\(4x=-3-5\)
\(4x=-8\)
\(x=-\frac{8}{4}\)
\(x=-2\)
***
\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)
\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)
\(x^2-2x+1-x^2+5x=\frac{21}{3}\)
\(3x+1=7\)
\(3x=7-1\)
\(3x=6\)
\(x=\frac{6}{3}\)
\(x=2\)
***
\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)
\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)
\(x^2+6x+9-x^2-8x+4x+32=1\)
\(2x=1-9-32\)
\(2x=-40\)
\(x=-\frac{40}{2}\)
\(x=-20\)
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
1 <=>2x^3+2x^2+x^2+x+5x+5=5
<=>[x+1][2x^2+x+5]
2x^2+x+5>0=>x=-1
2 Đặt x+1=a; x-2=b;2x-1=a+b
<=>a^3+b^3=[a+b]^3
<=>3ab[a+b]=0
<=>3[x+1][x-2][2x-1]=0
<=>x=-1 hoặc x=2 hoặc x=1/2
Vậy phượng trình có tập nghiệm S={-1;2;1/2}
May ban oi cau hoi nay la rut gon xong roiu moi tinh nah
\(\frac{3x^2-2x+1}{3}=0\)
mà \(3\ne0\Rightarrow3x^2-2x+1=0\)
\(\Rightarrow\left(3x-2\right)x=-1\)
TH1:3x-2=1 và x=-1
thay vào ta có:-3-2=1(vô lý)
TH2:3x-2=-1 và x=1
thay vào ta có:3-2=-1(vô lý)
Vậy ko có x thỏa mãn