K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

a) \(2^3:\left|x-2\right|=2\)

\(\Leftrightarrow8:\left|x-2\right|=2\)

\(\Leftrightarrow\left|x-2\right|=8:2\)

\(\Leftrightarrow\left|x-2\right|=4\)

Xét trường hợp 1: \(x-2=4\)

\(\Rightarrow x=4+2\)

\(\Rightarrow x=6\)

Xét trường hợp 2: \(x-2=-4\)

\(\Rightarrow x=-4+2\)

\(\Rightarrow x=-\left(4-2\right)\)

\(\Rightarrow x=-2\)

Vậy \(x=6\) hoặc \(x=-2\)

b)

7 tháng 1 2018

cảm ơn nha

23 tháng 6 2018

\(a,\frac{-3}{2}-2x+\frac{3}{4}=-1\)

\(\frac{-3}{2}-2x=-1-\frac{3}{4}\)

\(\frac{-3}{2}-2x=\frac{-7}{4}\)

\(2x=\frac{-7}{4}+\frac{-3}{2}\)

\(2x=\frac{-13}{4}\)

\(x=\frac{-13}{4}:2\)

\(x=\frac{-13}{4}.\frac{1}{2}\)

\(x=\frac{-13}{8}\)

24 tháng 8 2019

a)\(\left(5x+1\right)^2=\frac{36}{49}\\ \left(5x+1\right)^2=\left(\frac{6}{7}\right)^2\\ \Rightarrow\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=\frac{-6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{-1}{35}\\x=\frac{-13}{35}\end{matrix}\right.\)

vậy...

24 tháng 8 2019

2.

a) \(\left(5x+1\right)^2=\frac{36}{49}\)

\(5x+1=\pm\frac{6}{7}\)

\(\left[{}\begin{matrix}5x+1=\frac{6}{7}\\5x+1=-\frac{6}{7}\end{matrix}\right.\)\(\left[{}\begin{matrix}5x=\frac{6}{7}-1=-\frac{1}{7}\\5x=\left(-\frac{6}{7}\right)-1=-\frac{13}{7}\end{matrix}\right.\)\(\left[{}\begin{matrix}x=\left(-\frac{1}{7}\right):5\\x=\left(-\frac{13}{7}\right):5\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=-\frac{1}{35}\\x=-\frac{13}{35}\end{matrix}\right.\)

Vậy \(x\in\left\{-\frac{1}{35};-\frac{13}{35}\right\}.\)

Chúc bạn học tốt!

16 tháng 8 2019

1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c) TT

16 tháng 8 2019

a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)

=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)

=> \(\left|50x-140\right|=\left|25x+24\right|\)

=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)

c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)

=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)

Bài 2 : a. |2x - 5| = x + 1

 TH1 : 2x - 5 = x + 1

    => 2x - 5 - x = 1

    => 2x - x - 5 = 1

    => 2x - x = 6

    => x = 6

TH2 : -2x + 5 = x + 1

   => -2x + 5 - x = 1

   => -2x - x + 5 = 1

   => -3x = -4

   => x = 4/3

Ba bài còn lại tương tự

a: =>2x-1=4 hoặc 2x-1=-4

=>2x=5 hoặc 2x=-3

=>x=5/2 hoặc x=-3/2

d: =>x=|2|=2

e: \(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\x-y=0\end{matrix}\right.\Rightarrow x=y=1\)

21 tháng 9 2020

a

Dễ thấy theo BĐT trị tuyệt đối ta có:

\(\left|2x+4\right|+\left|3-x\right|\ge\left|2x+4+3-x\right|=\left|x+7\right|\)

Để phương trình có nghiệm thì đẳng thức phải xảy ra tức là:

\(\left(2x+4\right)\left(3-x\right)\ge0\)

b

Tương tự như câu a ta dễ có :

\(\left|3x-2\right|+\left|x-5\right|=\left|3x-2\right|+\left|5-x\right|\ge\left|3x-2+5-x\right|=\left|2x+3\right|\)

Đẳng thức xảy ra tại \(\left(3x-2\right)\left(5-x\right)\ge0\)

24 tháng 7 2019

1.A.0.96

24 tháng 7 2019

Câu a tự làm nhé

b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)

\(\Leftrightarrow32(2x+3)=24(3x-1)\)

\(\Leftrightarrow64x+96=72x-24\)

\(\Leftrightarrow64x+96-72x=-24\)

\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)