\(\left|x-1\right|+\left|x+3\right|=4\)

b.\(\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2017

a) Áp dụng bđt |a| + |b| \(\ge\) |a+b| ta có:

\(\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|\)

\(\ge\left|4\right|=4\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1\le0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

b) Xét từng khoảng

+ \(x< -\frac{3}{2}\)

+ \(-\frac{3}{2}\le x< 4\)

+ \(x\ge4\)

5 tháng 3 2017

a) Vì \(\left|x-1\right|+\left|x+3\right|=4\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|=4\)

Nhận thấy \(\left[{}\begin{matrix}\left|1-x\right|\ge1-x\forall x\\\left|x+3\right|\ge x+3\forall x\end{matrix}\right.\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge1-x+x+3\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge4\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le x\le1\)

\(\Rightarrow x\in\left\{-3-2;-1;0;1\right\}\)

Vậy \(x\in\left\{-3;-2;-1;0;1\right\}\).

21 tháng 10 2016

Với những bài thế này thì phải chia trường hợp để phá ngoặc.

TH1 : \(x< -2;\)có:

\(\Rightarrow-\left(5x-4\right)=-\left(x+2\right)\)

\(4-5x=-x-2\)

\(6=-4x\Rightarrow x=-\frac{3}{2}>-2\)( Không thỏa mãn )

TH2 : \(-2\le x< \frac{4}{5};\)ta có :

\(-\left(5x-4\right)=x+2\)

\(4-5x=x+2\)

\(2=6x\)

\(x=\frac{1}{3}\) ( thỏa mãn)

TH3 : \(x\ge\frac{4}{5};\)có :

\(5x-4=x+2\)

\(4x=6\)

\(x=\frac{3}{2}\)(thỏa mãn )

Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=\frac{3}{2}\end{array}\right.\)

 

21 tháng 10 2016

Dũng sai

11 tháng 9 2016

a)\(\left(2x-3\right)\left(x+1\right)< 0\)

\(\Leftrightarrow\begin{cases}2x-3>0\\x+1< 0\end{cases}\)  hoặc \(\begin{cases}2x-3< 0\\x+1>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{3}{2}\\x< -1\end{cases}\) (loại)  hoặc \(\begin{cases}x< \frac{3}{2}\\x>-1\end{cases}\)

\(\Leftrightarrow-1< x< \frac{3}{2}\)

b) \(\left(x-\frac{1}{2}\right)\left(x+3\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{2}>0\\x+3>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{2}< 0\\x+3< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{2}\\x>-3\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{2}\\x< -3\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{2}\\x< -3\end{array}\right.\)

c) Sai đề phải là \(\frac{x}{\left(x+3\right)\left(x+7\right)}\)

Có: \(\frac{3}{\left(x+3\right)\left(x+5\right)}+\frac{5}{\left(x+5\right)\left(x+10\right)}+\frac{7}{\left(x+10\right)\left(x+17\right)}=\frac{x}{\left(x+3\right)\left(x+17\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{1}{x+3}-\frac{1}{x+7}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow\)\(\frac{4}{\left(x+3\right)\left(x+7\right)}=\frac{x}{\left(x+3\right)\left(x+7\right)}\)

\(\Leftrightarrow x=4\)

11 tháng 9 2016

đề dúng đấy , bạn làm sai rồi

6 tháng 7 2017

\(\left|3x+4\right|=2\left|2x-9\right|\)

\(\left|3x+4\right|\ge0\)

\(\left|2x-9\right|\ge0\Rightarrow2\left|2x-9\right|\ge0\)

\(\Rightarrow3x+4=2\left(2x-9\right)\)

\(3x+4=4x-18\)

\(3x=4x-14\)

\(x=14\)

\(\left|10x+7\right|\le37\)

\(\Rightarrow\left|10x+7\right|\le\left\{37;36;35;......;0\right\}\)

\(10x+7\le\left\{\pm37;\pm36;\pm35;.....0\right\}\)

Tự tính tiếp.C tương tự

\(\left|x+3\right|-2x=\left|x-4\right|\)

\(\left|x+3\right|=\left|x-4\right|+2x\)

\(\left|x+3\right|\ge0\)

\(\left|x-4\right|\ge0\)

\(\Rightarrow x+3=x-4+2x\)

\(x+3=3x-4\)

\(x=3x-7\)

\(x=\dfrac{7}{2}\)

24 tháng 7 2017

mình làm lại câu b) nha

b) |x-3|=-4

th1: x-3=-4

x=3+(-4)

x=-1

th2: x-3=4

x=3+4

x=7

24 tháng 7 2017

b) \(\left|x-3\right|=-4\)

t/h1:\(x-3=-4\)

\(x=3-\left(-4\right)\)

\(x=7\)

t/h2:\(x-3=4\)

\(x=3-4\)

\(x=-1\)

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi