K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2015

nham rui

ko giai dc

 

3 tháng 10 2016

de qua

6 tháng 8 2018

x.(2.x-1)+1/3-2/3.x=0

30 tháng 7 2018

1) -3x2+5x=0

-x(3x-5)=0

suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5

2) x2+3x-2x-6=0

x(x+3)-2(x+3)=0

(x-2)(x+3)=0

suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3

3) x2+6x-x-6=0

x(x+6)-(x+6)=0

(x-1)(x+6)=0. vậy nghiệm là 1 và -6

4) x2+2x-3x-6=0

x(x+2)-3(x+2)=0

(x-3)(x+2)=0

vậy nghiệm là -2 và 3

5) x(x-6)-4(x-6)=0

(x-4)(x-6)=0. vậy nghiệm là 4 và 6

6)x(x-8)-3(x-8)=0

(x-3)(x-8)=0

suy ra nghiệm là 3 và 8

7) x2-5x-24=0

x2-8x+3x-24=0

x(x-8)+3(x-8)=0

(x+3)(x-8)=0

vậy nghiệm là -3 và 8

22 tháng 3 2020

câu 1:  -3x2 + 5x = 0

suy ra -x(3x-5)=0

sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3

NV
7 tháng 10 2019

a/ \(x\left(x^2-2x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\pm\sqrt{3}\\\end{matrix}\right.\)

b/ \(\Leftrightarrow2x^3-4x^2+6x-x^2+2x-3=0\)

\(\Leftrightarrow2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\)

c/ \(\Leftrightarrow3x^3-15x^2+9x+x^2-5x+3=0\)

\(\Leftrightarrow3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(x^2-5x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=\frac{5\pm\sqrt{13}}{2}\end{matrix}\right.\)

d/ \(x\left(x^2+6x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\pm\sqrt{14}\end{matrix}\right.\)

6 tháng 7 2018

\(1.6x\left(x-10\right)-2x+20=0\)

\(6x\left(x-10\right)-2\left(x-10\right)=0\)

\(2\left(x-10\right)\left(3x-1\right)=0\)

⇔ x = 10 hoặc x = \(\dfrac{1}{3}\)

KL....

\(2.3x^2\left(x-3\right)+3\left(3-x\right)=0\)

\(3\left(x-3\right)\left(x^2-1\right)=0\)

\(x=+-1\) hoặc \(x=3\)

KL....

\(3.x^2-8x+16=2\left(x-4\right)\)

\(\left(x-4\right)^2-2\left(x-4\right)=0\)

\(\left(x-4\right)\left(x-6\right)=0\)

\(x=4\) hoặc \(x=6\)

KL.....

\(4.x^2-16+7x\left(x+4\right)=0\)

\(\text{⇔}4\left(x+4\right)\left(2x-1\right)=0\)

\(x=-4hoacx=\dfrac{1}{2}\)

KL.....

\(5.x^2-13x-14=0\)

\(x^2+x-14x-14=0\)

\(\text{⇔}\left(x+1\right)\left(x-14\right)=0\)

\(\text{⇔}x=14hoacx=-1\)

KL......

Còn lại tương tự ( dài quá ~ )

29 tháng 11 2018

\(8x^3+12x^2+6x+1=0.\)

\(\Leftrightarrow8x^2\left(x+\frac{1}{2}\right)+8x\left(x+\frac{1}{2}\right)+2\left(x+\frac{1}{2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\2\left(4x^2+4x+1\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)

Vậy pt có 1 No là...

29 tháng 11 2018

\(2\left(x+5\right)-x^2-5x=0.\)

\(\Leftrightarrow2x+10-x^2-5x=0\)

\(\Leftrightarrow x^2+3x-10=0\)

\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)

30 tháng 10 2019

a) \(2x^2+3x-8=0\)

Ta có: \(\Delta=3^2+4.2.8=73\)

pt có 2 nghiệm

\(x_1=\frac{-3+\sqrt{73}}{4}\);\(x_1=\frac{-3-\sqrt{73}}{4}\)

d) \(\left(x^2+2x\right)^2-2\left(x^2+2x\right)-3=0\)

Đặt \(x^2+2x=t\)

\(pt\Leftrightarrow t^2-2t-3=0\)

Ta có: \(\Delta=2^2+4.3=16,\sqrt{\Delta}=4\)

pt trên có 2 nghiệm

\(x_1=\frac{2+4}{2}=3;x_2=\frac{2-4}{2}=-1\)

\(\Rightarrow\orbr{\begin{cases}x^2+2x=3\\x^2+2x=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)\left(x-1\right)=0\\\left(x+1\right)^2=0\end{cases}}\)

\(\Rightarrow x\in\left\{-3;-1;1\right\}\)

30 tháng 10 2019

c) \(x^4+8x^3+19x^2+12x=0\)

\(\Leftrightarrow x^4+4x^3+4x^3+16x^2+3x^2+12x=0\)

\(\Leftrightarrow\left(x^4+4x^3+3x^2\right)+\left(4x^3+16x^2+12x\right)=0\)

\(\Leftrightarrow x\left(x^3+4x^2+3x\right)+4\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+4x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^3+x^2+3x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+4\right)\left(x^2+3x\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)\left(x+3\right)\left(x+4\right)=0\)

\(\Leftrightarrow x\in\left\{0;-1;-3;-4\right\}\)