Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-2)3 - 6(x+1)2 - x3 + 12 = 0
<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0
<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0
<=> -12x2+4=0
<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)
vậy pt có 2 nghiệm....
b) x3 - 6x2 + 12x - 8 = 0
<=> (x3-2x2)-(4x2-8x)+(4x+8)=0
<=> (x-2)(x2-4x+4)=(x-2)3=0
=> x=2 là nghiệm
c) 8x3 - 12x2 + 6x - 1 = 0
<=> (2x-1)3=0
<=> x=1/2
a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)
\(\Leftrightarrow-12x^2-2=0\)
\(\Leftrightarrow-2\left(6x^2+1\right)=0\)
\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)
Vậy không có giá trị nào của x thỏa mãn pt
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy x=2
c) \(8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
Vậy \(=\frac{1}{2}\)
a, 2x(x-2)-x+2=0
<=>2x(x-2)-(x-2)=0
<=>(x-2)(2x-1)=0
=>x-2=0
hoặc 2x-1=0
=>x=2
hoặc x=1/2
b, 1-8x3=6x-12x2
<=>1-8x3-6x+12x2=0
<=>[13-(2x)3 ] -6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2 ]-6x(1-2x)=0
<=>(1-2x)[1+2x+(2x)2-6x]=0
<=>(1-2x)[12-2.1.2x+(2x)2 ]=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
=>1-2x=0
=>2x=1
=>x=1/2
Chúc bn học giỏi nhoa!!!
a)<=>2x(x-2)-(x-2)=0
<=>(2x-1)(x-2)=0
+) 2x-1=0
=>x=1/2
+)x-2=0
=>x=2
Vậy x=1/2 hoặc x=2
b) <=>1- (2x)3=6x(1-2x)
<=>(1-2x)(1+2x+4x2)=6x(1-2x)
<=>(1-2x)(1+2x+4x2)-6x(1-2x)=0
<=>(1-2x)(1+2x+4x2-6x)=0
<=>(1-2x)(1-4x+4x2)=0
<=>(1-2x)(1-2x)2=0
<=>(1-2x)3=0
<=> 1-2x=0
<=>x=1/2
\(a,x^3-3x^2+3x-1=0\)
\(\Leftrightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)
\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)
Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)
Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)
Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)
Và \(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:
\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt
Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)
\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)
\(c,x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Leftrightarrow x+2=0\Rightarrow x=-2\)
\(d,x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Rightarrow x-2=0\Rightarrow x=2\)
\(e,8x^3-12x^2+6x-1=0\)
\(\Leftrightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(f,x^3+9x^2+27x+27=0\)
\(\Leftrightarrow\left(x+3\right)^3=0\)
\(\Rightarrow x+3=0\Rightarrow x=-3\)
a.\(x^3-6x^2+12x-8=0\Rightarrow\)\(\left(x-2\right)^3=0\Rightarrow x=2\)
b.\(x^3+9x^2+27x+27=0\Rightarrow\left(x+3\right)^3=0\)\(\Rightarrow x=-3\)
c. \(8x^3-12x^2+6x-1=0\)
\(\Rightarrow\left(2x-1\right)^3=0\)
\(\Rightarrow x=\frac{1}{2}\)
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2+1^3=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\frac{1}{2}\)
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\left(pt1\right)\\8x^2+8x+2=0\left(pt2\right)\end{cases}}\)
Giải pt 1 \(x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)
Giải pt 2 : vô nghiệm
Vậy phương trình có 1 nghiệm duy nhất \(x=-\frac{1}{2}\)
Chúc bạn học giỏi !!!!
a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
b, \(8x^3+12x^2+6x+1=0\Leftrightarrow\left(2x+1\right)^3=0\Leftrightarrow x=-\frac{1}{2}\)
Đơn giản thế này thôi :D
\(8x^3+12x^2+6x+1=0\)
\(\Leftrightarrow\left(2x+1\right)^3=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy \(x=-\dfrac{1}{2}\)