K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KH
0
Các câu hỏi dưới đây có thể giống với câu hỏi trên
4 tháng 3 2020
- Tổng các hệ số của 1 đa thức A(x) bất kì bằng giá trị của đa thức đó tại x = 1. Vậy tổng các hệ số của đa thức :
A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005A(x)=A(1)=(3−4.1+12)2004(3+4.1+12)2005
=0.(3+4.1+12)2005=0=0.(3+4.1+12)2005=0
Vậy tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc là 0 .
3 tháng 6 2019
Cái này bạn phải nhớ công thức tổng quát như thế này nè:
Tổng các hệ số của một đa thức P(x) bất kỳ bằng giá trị của đa thức đó tại x=1.
Vật tổng các hệ số của đa thức đó là:
\(A\left(x\right)=\left(3-4\cdot1+1^2\right)^{2004}\cdot\left(3+4\cdot1+1^2\right)^{2005}\)
\(\Rightarrow A\left(x\right)=0\)
Vậy tổng các hệ số của A(x) bằng 0.