Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Do điểm M nằm trên trục hoành nên M( x; 0)
Khoảng cách từ M đến mỗi đường thẳng lần lượt là:
Theo bài ra ta có: d( M; a) = d( M; b) nên
Do đó:
Sut ra 3x- 6= -3x-3 nên x= 1/2
Vậy điểm M ( 1/2; 0)
Gọi \(M\left(m;0\right)\) \(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\)
\(\Rightarrow\frac{\left|3m-6\right|}{\sqrt{3^2+2^2}}=\frac{\left|3m+3\right|}{\sqrt{3^2+2^2}}\Rightarrow6-3m=3m+3\)
\(\Rightarrow m=\frac{1}{2}\Rightarrow M\left(\frac{1}{2};0\right)\)
Đáp án B
Do M nằm trên trục hoành nên tọa độ điểm M( x; 0)
Khi đó:
Để điểm M cách đều 2 đường thẳng đã cho thì:
Suy ra: 3 x - 6 = 3 x + 6
Suy ra : 3x- 6= - (3x+ 6)
Do đó: x= 0.
Vậy tọa độ điểm M cần tìm là (0; 0)
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
M thuộc (d1) nên M(1-2t;1+t)
Theo đề, ta có: d(M;d2)=d(M;d3)
=>\(\dfrac{\left|\left(1-2t\right)\cdot3+\left(1+t\right)\cdot4-4\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|\left(1-2t\right)\cdot4+\left(1+t\right)\cdot\left(-3\right)+2\right|}{\sqrt{4^2+\left(-3\right)^2}}\)
=>|-6t+3+4t+4-4|=|4-8t-3t-3+2|
=>|-2t+3|=|-11t+3|
=>-2t+3=-11t+3 hoặc -2t+3=11t-3
=>t=0 hoặc t=6/13
=>M(1;1); M(1/13; 19/13)
Do tâm nằm trên đường thẳng ∆: x + 2y – 6 = 0 nên tâm là I(6 – 2y; y).
Đường tròn tiếp xúc với hai trục tọa độ nên:
6 − 2 y = y ⇔ 6 − 2 y = y 6 − 2 y = − y ⇔ − 3 y = − 6 − y = − 6 ⇔ y = 2 y = 6
Bán kính đường tròn là R = 2 hoặc R = 6
ĐÁP ÁN B
Gọi \(M\left(m;0\right)\)
Do M cách đều 2 đường thẳng
\(\Rightarrow d\left(M;d_1\right)=d\left(M;d_2\right)\)
\(\Leftrightarrow\frac{\left|3m-2.0-6\right|}{\sqrt{3^2+2^2}}=\frac{\left|3m-2.0+3\right|}{\sqrt{3^2+\left(-2\right)^2}}\)
\(\Leftrightarrow\left|3m-6\right|=\left|3m+3\right|\Rightarrow3m-6=-3m-3\)
\(\Leftrightarrow6m=3\Rightarrow m=\frac{1}{2}\Rightarrow M\left(\frac{1}{2};0\right)\)