K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\frac{3x-4}{2x-3}=\frac{2x-3+x-1}{2x-3}=1+\frac{x-1}{2x-3}\)

Để A có giá trị nguyên thì

\(x-1⋮2x-3\Leftrightarrow2x-2⋮2x-3\)

\(\Rightarrow2x-3-\left(2x-2\right)⋮2x-3\Rightarrow1⋮2x-3\)

\(\orbr{\begin{cases}2x-3=1\\2x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=1\end{cases}}\)

15 tháng 6 2019

Có bạn nào làm được câu b không??

15 tháng 6 2019

Để A nguyên thì \(x^2-4x-4⋮x-7\)

\(\Rightarrow x^2+3x-7x-21+17⋮x-7\)

\(\Rightarrow\left(x-7\right)\left(x+3\right)+17⋮x-7\)

Mà \(\left(x-7\right)\left(x+3\right)⋮x-7\)

\(\Rightarrow17⋮x-7\)

\(\Rightarrow x-7\in\left\{1;17;-1;-17\right\}\)

\(\Rightarrow x\in\left\{8;24;6;-10\right\}\)

15 tháng 6 2019

\(\text{A=}\frac{x^2-4x-4}{x-7}\)

\(=\frac{x^2-4x-21+17}{x-7}\)

\(=\frac{x^2+3x-7x-21}{x-7}+\frac{17}{x-7}\)

\(=\frac{x\left(x+3\right)-7\left(x+3\right)}{x-7}+\frac{17}{x-7}\)

\(=\frac{\left(x-7\right)\left(x+3\right)}{x-7}+\frac{17}{x-7}\)

\(=\left(x+3\right)+\frac{17}{x-7}\)

Vì \(3\in Z\)

\(\Leftrightarrow x+3\in Z\)

\(\Rightarrow\text{A}\in Z\text{ khi }\frac{17}{x-7}\in Z\)

\(\Leftrightarrow\left(x-7\right)\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)

\(\Leftrightarrow x=\left\{8;6;24;-10\right\}\)

Vậy với \(x=\left\{-10;6;8;24\right\}\)thì A có giá trị nguyên

21 tháng 7 2019

a, Để phân số đạt giá trị nguyễn 

\(\Rightarrow x+1⋮x-2\)

\(\Rightarrow x-2+3⋮x-2\)

mà \(x-2⋮x-2\Rightarrow3⋮x-2\)

\(\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow x\in\left\{3;5\pm1\right\}\)

21 tháng 7 2019

b,Tương tự :

\(2x-1⋮x+5\)

\(\Rightarrow2x+10-11⋮x+5\)

\(2\left(x+5\right)-11⋮x+5\)

mà \(2\left(x+5\right)⋮x+5\Rightarrow11⋮x+5\)

\(\Rightarrow x+5\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

\(x\in\left\{-4;\pm6;-16\right\}\)

7 tháng 7 2016

Bài 1:

a)\(\left(2x+5\right)\left(6y-7\right)=13\)

=>2x+5 và 6y-7 thuộc Ư(13)={13;1;-1;-13}

  • Với 2x+5=13 =>x=4      =>6y-7=1 =>y=4/3 (loại)
  • Với 2x+5=-13 =>x=-9    =>6y-7=-1 =>y=1 (tm)
  • Với 2x+5=-1 =>x=-3      =>6y-7=-13 =>y=-1 (tm)
  • Với 2x+5=1  =>x=-2      =>6y-7=13=13 =>y=10/3 (loại)

Vậy các cặp số nguyên (x;y) thỏa mãn là (-9,1);(-3;-1)

2)xy+x+y=0

=>xy+x+y+1=1

=>(xy+x)+(y+1)=1

=>x(y+1)+(y+1)=1

=>(x+1)(y+1)=1

Sau đó bn =>x+1 và y+1 thuộc Ư(1) rồi tính như trên nhé

c)xy-x-y+1=0

=>(x-1)y-x+1=0

=>(x-1)y-x-0+1=0

=>(x-1)(y-1)=0

  • Với x-1=0 =>x=1 thì mọi y thuộc Z đều thỏa mãn (vì đề chỉ cho thuộc Z) 
  • Với y-1=0 =>y=1 thì mọi x thuộc Z đều thỏa mãn

d và e bn phân tích ra tính tương tự

Bài 2:

a)\(A=\frac{x+5}{x+1}=\frac{x+1+4}{x+1}=\frac{x+1}{x+1}+\frac{4}{x+1}=1+\frac{4}{x+1}\in Z\)

=>4 chia hết x+1

=>x+1 thuộc Ư(4)={1;-1;2;-2;4;-4}

Bạn thay x+1={1;-1;2;-2;4;-4} vào rồi tính tiếp

b)\(=\frac{2x+4}{x+3}=\frac{2\left(x+3\right)-2}{x+3}=\frac{2\left(x+3\right)}{x+3}-\frac{1}{x+3}=2-\frac{1}{x+3}\in Z\)

=>2 chia hết x+3 

=>x+3 thuộc Ư(2)={1;-1;2-2} tự làm nhé

c)\(C=\frac{4x+4}{2x+4}=\frac{2\left(2x+4\right)-4}{2x+4}=\frac{2\left(2x+4\right)}{2x+4}-\frac{4}{2x+4}=2-\frac{4}{2x+4}\in Z\)

=>4 chia hết 2x+4

=>2x+4 thuộc Ư(4)={1;-1;2;-2;4;-4} tự tính tiếp nhé

21 tháng 6 2017

Để C nguyên thì : 10x - 9 chia hết cho 2x - 3

<=> 10x - 15 + 6 chia hết cho 2x - 3

<=> 5(2x - 3) + 6 chia hết cho 2x - 3

=> 6 chia hết cho 2x - 3

=> 2x - 3 thuộc Ư(6) = {-6;-3;-2;-1;1;2;3;6}

Ta có bảng : 

2x - 3-6-3-2-11236
2x-30124569
x 0 12 3 
17 tháng 7 2019

Để phân số có giá trị là 1 số nguyen

\(\Leftrightarrow4x-6⋮2x+1\)

\(\Leftrightarrow2.\left(2x+1\right)-8⋮2x+1\)

Mà \(2.\left(2x+1\right)⋮2x+1\)

\(\Rightarrow8⋮2x+1\)

\(\Rightarrow2x+1\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4\pm8\right\}\)

Em tìm x rồi thay vào phân số H ra giá trị nguyên nhé.

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344c, Tìm 3 số x,y,z...
Đọc tiếp

1.Cho dãy tỉ số bằng nhau: \(\frac{2016a++c+d}{c}\) =\(\frac{a+2016b+c+d}{b}\)=\(\frac{a+b+2016c+d}{c}\)=\(\frac{a+b+c+2016d}{d}\). Tính giá trị biểu thức M=\(\frac{a+b}{c+d}+\frac{b+c}{d+a}\)+\(\frac{c+d}{a+b}+\frac{d+a}{b+c}\)  

2. a, Tìm tất cả các giá trị của x thỏa mãn :|x+2013|+\(\left(3y-7\right)^{2014}\le\) 0

b,Tìm tất cả các giá trị của x biết : \(7^{2x}+7^{2x+3}\)=344

c, Tìm 3 số x,y,z biết \(\frac{7}{2x+2}\)=\(\frac{3}{2y-4}\)=\(\frac{5}{x+4}\) và x+y+z=17

3.a, Cho tỉ lệ thức \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\) .CMR: c=0 hoặc b=0

b,Cho x,y là các số nguyên tố dương sao cho A=\(\frac{x^4+y^4}{15}\) cũng là số nguyên dương . CMR ; x,y đều chia hết cho 3 và 5. Từ đó tìm ra giá trị nhỏ nhất của A

c, cho các số a,b,c đôi một khác nhau và khác 0, thỏa mãn \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) . hãy tìm giá trị biểu thức : P=\(\left(1+\frac{c}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)

2
19 tháng 12 2019

1) Ta có : \(\frac{2016a+b+c+d}{a}=\frac{a+2016b+c+d}{b}=\frac{a+b+2016c+d}{c}=\frac{a+b+c+2016d}{d}\)

Trừ 4 vế với 2015 ta được : \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)

Nếu a + b + c + d = 0

=> a + b = -(c + d)

=> b + c = (-a + d) 

=> c + d = -(a + b)

=> d + a = (-b + c)

Khi đó M = (-1) + (-1) + (-1) + (-1) = - 4

Nếu a + b + c + d\(\ne0\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)

Khi đó M = 1 + 1 + 1 + 1 = 4

2) a) Ta có : \(\hept{\begin{cases}\left|x+2013\right|\ge0\forall x\\\left(3x-7\right)^{2004}\ge0\forall y\end{cases}\Rightarrow\left|x+2013\right|+\left(3x-7\right)^{2014}\ge0}\)

Dấu "=" xảy ra \(\hept{\begin{cases}x+2013=0\\3y-7=0\end{cases}\Rightarrow\hept{\begin{cases}x=-2013\\y=\frac{7}{3}\end{cases}}}\)

b) 72x + 72x + 3 = 344

=> 72x + 72x.73 = 344

=> 72x.(1 + 73) = 344

=> 72x  = 1

=> 72x = 70

=> 2x = 0 => x = 0

c) Ta có :

 \(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{x+4}\Leftrightarrow\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2x+8}=\frac{7-10}{2x+2-2x-8}=\frac{1}{2}\)(dãy tỉ số bằng nhau)

=>  2x + 2 = 14 => x = 6 ; 

2y - 4 = 6 => y = 5 ; 

6 + 5 + z = 17 => z = 6 

Vậy x = 6 ; y = 5 ; z = 6

3) a) Ta có : \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}=\frac{a+b+c-a+b-c}{a+b-c-a+b+c}=\frac{2b}{2b}=1\)(dãy ti số bằng nhau) 

=> a + b + c = a + b - c => a + b + c - a - b + c = 0 => 2c = 0 => c = 0;  

Lại có : \(\frac{a+b+c}{a+b-c}-1=\frac{a-b+c}{a-b-c}-1\Leftrightarrow\frac{2c}{a+b-c}=\frac{2c}{a-b-c}\Rightarrow a+b-c=a-b-c\) => b = 0 

Vậy c = 0 hoặc b = 0

c) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b+b+c+a+c}{c+a+b}=2\)(dãy tỉ số bằng nhau) 

=> \(\hept{\begin{cases}a+b=2c\\b+c=2a\\a+c=2b\end{cases}}\)

Khi đó P = \(\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\left(1+\frac{b}{a}\right)=\frac{b+c}{b}.\frac{c+a}{c}=\frac{a+b}{a}=\frac{2a.2b.2c}{abc}=8\)

Vậy P = 8

9 tháng 1 2020

2. b) \(7^{2x}+7^{2x+3}=344\)

        \(7^{2x}\cdot\left(1+7^3\right)=344\)

        \(7^{2x}\cdot\left(1+343\right)=344\)

        \(7^{2x}\cdot344=344\)

               \(7^{2x}=1\)  

               \(7^{2x}=7^0\)

              \(2x=0\)

               \(x=0\)

Để A có giá trị nguyên thì 2x+3 phải chia hết cho x-1

=>2(x-1)+5 chia hết cho x-1

=>x-1 thuộc Ư(5)={1;5;-1;-5}

+, x-1=1 =>x=2

+,....

Còn lại tự làm nha bn

19 tháng 3 2020

a, để 2x + 3/x - 1 nguyên

=> 2x + 3 ⋮ x - 1

=> 2x - 2 + 5 ⋮ x - 1

=> 2(x - 1) + 5 ⋮ x - 1

=> 5 ⋮ x - 1

=> x - 1 thuộc Ư(5)

=> x - 1 thuộc {-1; 1; -5; 5}

=> x thuộc {0; 2; -4; 6}

b, đề 3x - 4/x + 1 nguyên

=> 3x - 4 ⋮ x + 1

=> 3x + 3 - 7 ⋮ x + 1

=> 3(x + 1) - 7 ⋮ x + 1

=> 7 ⋮ x + 1

22 tháng 2 2018

Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0

\(\Rightarrow4-x=1\rightarrow x=3\)

thay vào ta đc A=3

B3

\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)

Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )

Vậy gtln của 3/4-x là 3 thay vào ta đc b=4

Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)

22 tháng 2 2018

B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)

VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}

\(\Rightarrow\)x={0;-1;23}

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)Bài 2: Tìm số nguyên x và y biết rằng:                     \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự...
Đọc tiếp

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó

 a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)

Bài 2: Tìm số nguyên x và y biết rằng: 

                    \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu .Tổng của tất cả các hiệu đó bằng bao nhiêu ?

Bài 4:Thực hiện các phép tính:

a.\(\frac{(\frac{3}{10}-\frac{4}{15}-\frac{7}{20})\times\frac{5}{19}}{(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35})\times\frac{-4}{3}}\) 

b.\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

c.\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

2
18 tháng 8 2020

các bạn giúp mình với mình đang cần đáp án gấp

18 tháng 8 2020

1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)

=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)

b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)

lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)

Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)

2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{20+xy}{4x}=\frac{1}{8}\)

=> 4x = 8(20 + xy)

=> x = 2(20 + xy)

=> x = 40 + 2xy

=> x - 2xy = 40

=> x(1 - 2y) = 40

Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)

mà x(1 - 2y) = 40

=> 1 - 2y \(\inƯ\left(40\right)\)(2)

Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)

Nếu 1 - 2y = 1 => x = 40

=> y = 0 ; x = 40

Nếu 1 - 2y = 5 => x = 8

=> y = -2 ; x = 8 

Nếu 1 - 2y = -1 => x = -40

=> y = 1 ; y = - 40

Nếu 1 - 2y = -5 => x = -8

=> y = 3 ; x =-8

Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)

4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)

b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)

c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)