K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
QT
1
AH
Akai Haruma
Giáo viên
20 tháng 10 2020
Quân Trương: $m\leq 0$ hay $m\in (-\infty;0]$. Là đáp án A đấy bạn ơi
NV
Nguyễn Việt Lâm
Giáo viên
27 tháng 3 2019
\(y'=-x^2+2mx+3m+2\)
Để hàm số nghịch biến trên R \(\Rightarrow y'\le0\) \(\forall x\in R\)
\(\Rightarrow\Delta'\le0\Leftrightarrow m^2+3m+2\le0\Rightarrow-2\le m\le-1\)
CM
8 tháng 4 2018
Chọn B.
Tập xác định
Có
Hàm số nghịch bến trên mỗi khoảng của tập xác định
NV
Nguyễn Việt Lâm
Giáo viên
9 tháng 5 2019
\(y'=-x^2+2mx+3m+2\)
Để hàm số nghịch biến trên R khi và chỉ khi:
\(\Delta'=m^2+3m+2\le0\Rightarrow-2\le m\le-1\)
\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\) \(\Rightarrow a-3b=1\)
\(y'=-3x^2+6x+m\)
Để hàm số nghịch biến trên \(\left(0;+\infty\right)\Rightarrow y'\le0\) \(\forall x>0\)
\(\Rightarrow-3x^2+6x+m\le0\Leftrightarrow3x^2-6x\ge m\)
Đặt \(f\left(x\right)=3x^2-6x\Rightarrow m\le\min\limits_{\left(0;+\infty\right)}f\left(x\right)=f\left(1\right)=-3\)
\(\Rightarrow m\le-3\)