K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

Ta có:

\(3x^2+6y^2+2z^2+3y^2z^2-18=6\) \(\left(1\right)\)

\(\Leftrightarrow3.\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\left(2\right)\)

\(\Rightarrow z^2⋮3\)\(2z^2\le33\)

Hay \(\left|z\right|\le3\)

\(z\) nguyên nên \(\Rightarrow z=0\) hoặc \(\left|z\right|=3\)

. TH1:

\(z=0,\left(2\right)\) \(\Leftrightarrow\left(x-3\right)^2+2y^2=11\left(3\right)\)

Từ \(\left(3\right)\) suy ra: \(2y^2\le11\)

\(\Rightarrow\left|y\right|\le2\)

Với \(y=0,(3)\) không có số nguyên x nào thỏa mãn.

Với \(\left|y\right|=1\) , từ \((3)\) suy ra: \(x\in\left\{0;6\right\}\)

. TH2:

\(\left|z\right|=3,\left(2\right)\Leftrightarrow\left(x-3\right)^2+11y^2=5\left(4\right)\)

Từ \(\left(4\right)\) suy ra: \(11y^2\le5\)

\(\Rightarrow y=0,\left(4\right)\) không có số nguyên x nào thỏa mãn.

Vậy pt \(3x^2+6y^2+2z^2+3y^2z^2-18=6\)\(4\) nghiệm nguyên \(\left(x;y;z\right)\) là: \(\left(0;1;0\right),\left(0;-1;0\right),\left(6;1;0\right)\)\(\left(6;-1;0\right)\) .

15 tháng 4 2019

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$

$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$

$\Rightarrow 2z^2\vdots 3$

$\Rightarrow z\vdots 3$

Lại có:

$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$

$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)

Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$

Nếu $z=0$ thì:

$3(x-3)^2+6y^2=33$

$\Leftrightarrow (x-3)^2+2y^2=11$

$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$

$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

Nếu $z=\pm 3$ thì:

$3(x-3)^2+15y^2=15$

$\Rightarrow 15y^2\leq 15$

$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow y\in \left\{\pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.