Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: xy+3y-y=6
=> xy+2y=6
=> y(x+2)=6
vì x,y nguyên nên y,(x+2) là các ước của 6
ta có bảng sau
x+2 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |
x | -1 | -3 | 0 | -4 | 1 | -5 | 4 | -8 |
xy+3y-y=6
xy+y(3-1)=6
xy+y2=6
y(x+2)=6
lập bảng
x+2 | 2 | 3 | -2 | -3 |
y | 3 | 2 | -3 | -2 |
x | 0 | 1 | -4 | -5 |
vậy với các cặp x,y thỏa mãn là:
nếu y=3 thì x=0;nếu y=2 thì x=1;nếu y=-2 thì x=-4;nếu y=-3 thì x=-5
Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
Lời giải:
Nếu $n\vdots 3$. Đặt $n=3k$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k}-1=8^k-1\equiv 1^k-1\equiv 0\pmod 7$ (tm)
Nếu $n$ chia 3 dư 1. Đặt $n=3k+1$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+1}-1=8^k.2-1\equiv 1^k.2-1\equiv 1\pmod 7$ (không tm)
Nếu $n$ chia 3 dư 2. Đặt $n=3k+2$ với $k$ tự nhiên.
Khi đó: $2^n-1=2^{3k+2}-1=8^k.4-1\equiv 1^k.4-1\equiv 3\pmod 7$ (không tm)
Vậy số tự nhiên $n$ thỏa mãn $2^n-1\vdots 7$ là những số chia hết cho 3.
bó tay tui cung dăng vướng chan ở câu hỏi này hihi