K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2016

Đề đúng : tìm  tất cả các số nguyên dương \(a,b\) sao cho \(a+b^2\) chia hết cho \(a^2b-1\)

Có thể vào đây tham khảo\(\rightarrow\) Các bài toán và vấn đề về Số học 

30 tháng 11 2016

de the nao lam nhu vay

Tra loi: tat ca cac so nguyen duong a,b deu thoa man

12 tháng 6 2020

Bài cuối có Max nữa nhé, cần thì ib mình làm cho.

Giả sử \(c=min\left\{a;b;c\right\}\Rightarrow c\le1< 2\Rightarrow2-c>0\)

Ta có:\(P=ab+bc+ca-\frac{1}{2}abc=\frac{ab}{2}\left(2-c\right)+bc+ca\ge0\)

Đẳng thức xảy ra tại \(a=3;b=0;c=0\) và các hoán vị

18 tháng 6 2020

3/ \(P=\Sigma\frac{\left(3-a-b\right)\left(a-b\right)^2}{3}+\frac{5}{2}abc\ge0\)

30 tháng 8 2019

Đặt \(a-b=x;b-c=y;c-a=z\)

\(\Rightarrow x+y+z=a-b+b-c+c-a=0\)

Lúc đó: \(B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

Mà \(x+y+z=0\Rightarrow2\left(x+y+z\right)=0\Rightarrow\frac{2\left(x+y+z\right)}{xyz}=0\)

\(\Rightarrow B=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{yz}+\frac{2}{xz}+\frac{2}{xy}\)

\(=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

29 tháng 9 2017
danh dau k cho mick nhe
30 tháng 9 2017

\(a.\left[bn\right]=b.\left[an\right]\)

\(\Rightarrow\frac{a}{b}=\frac{an}{bn}\)

\(\Rightarrow\frac{a}{b}=\frac{a}{b}\)

\(\Rightarrow\left(a,b\right)\in R\)

31 tháng 5 2017

2, 5a+b+3c/a-b+c>1 <=> a-b+c+4a+2b+2c/a-b+c>1 

<=>4a+2b+2c/a-b+c > 0 (1) 

xét P(2)=4a+2b+c>0,P(-1)=a-b+c>0 (do P(x)>0 với mọi x)

=>P(2)/P(-1)>0 => (1) đúng =>đpcm

3, hóng cao nhân 

-đề chuyên LQĐ

31 tháng 5 2017

1,Bổ đề : (a^2+b^2+c^2)(a+b+c) >= 3(a^2b+b^2c+c^2a) (nhân bung rồi Cauchy từng cặp 2 số) 

từ đó  P <= (a+b+c)/3-(a+b+c)^2/9=x/3-x^2/9 (với x=a+b+c>0)=x/3-(x/3)^2=t-t^2(với t=a+b+c>0)=t(1-t)<=(t+1-t)^2/4=1/4

maxP=1/4,đạt tại a=b=c=1/2