K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
31 tháng 5 2019

1/ ĐKXĐ: \(cos2x\ne0\Rightarrow2x\ne k\frac{\pi}{2}\Rightarrow x\ne\frac{k\pi}{4}\)

2/ ĐKXĐ:

\(\sqrt{2-2cosx}\ne2\Rightarrow2-2cosx\ne4\)

\(\Rightarrow cosx\ne-1\Rightarrow x\ne\pi+k2\pi\)

3/ ĐKXĐ: \(sin3x\ne0\Rightarrow3x\ne k\pi\Rightarrow x\ne\frac{k\pi}{3}\)

NV
31 tháng 5 2019

Khác nhau bạn

Ở câu 3, \(cot3x\) xác định nên \(sin3x\ne0\)

\(1-\sqrt{1+sin3x}\ne0\Rightarrow1+sin3x\ne1\Rightarrow sin3x\ne0\)

Cả 2 điều kiện xác định là cot3x xác đinh và mẫu xác định đều giống nhau là \(sin3x\ne0\)

27 tháng 6 2021

\(1.\hept{\begin{cases}2-2\cos x\ge0\\\sqrt{2-2\cos x}-2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}\cos x\le1\left(đ\right)\\\cos x\ne-1\end{cases}}\Leftrightarrow x\ne\pi+k2\pi\left(k\in Z\right)\)

\(2.\hept{\begin{cases}\sin3x\ne0\\1+\sin3x\ge0\\1-\sqrt{1+\sin3x}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}3x\ne k\pi\\\sin3x\ge-1\left(đ\right)\\\sin3x\ne0\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{3}\left(k\in Z\right)\)

\(3.\hept{\begin{cases}\sin2x\ne0\\\sin x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x\ne k\pi\\x\ne k\pi\end{cases}}\Leftrightarrow x\ne\frac{k\pi}{2}\left(k\in Z\right)\)

25 tháng 6 2021

1. \(sin\left(\dfrac{\pi}{3}-x\right)\ne0\Leftrightarrow\dfrac{\pi}{3}-x\ne k\pi\Leftrightarrow x\ne\dfrac{\pi}{3}-k\pi\)

2. \(cos2x\ne0\Leftrightarrow2x\ne\dfrac{\pi}{2}+k\pi\Leftrightarrow x\ne\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

3. \(\sqrt{1+sinx}-\sqrt{2}\ge0\Leftrightarrow1+sinx\ge2\Leftrightarrow sinx\ge1\Leftrightarrow sinx=1\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\)

4. \(\sqrt{2-2cosx}-2\ne0\Leftrightarrow2-2cosx\ne4\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne\pi+k2\pi\)

5. \(1-\sqrt{1+sin3x}\ne0\Leftrightarrow sin3x\ne0\Leftrightarrow3x\ne k\pi\Leftrightarrow x\ne\dfrac{k\pi}{3}\)

26 tháng 6 2021

câu 4 sao ra 2-2cosx\(\ne\)4 ạ

25 tháng 8 2019

1) a) cos7x - √3 sin7x = -√2 (a = 1; b = -√3; c = -√2)

=> a^2 + b^2 =4 > c^2 = 2

Chia 2 vế pt (*) cho \(\sqrt{a^2+b^2}=2\) ta đc:

<=> 1/2cos7x - √3/2 sin7x = -√2/2

<=> sin(π/6)cos7x - cos(π/6)sin7x = sin(-π/4)

<=> sin(π/6 - 7x) = sin(-π/4)

<=> π/6 - 7x = -π/4 + k2π

hoặc (k∈Z)

π/6 - 7x = π + π/4 + k2π

<=> x = 5π/84 + k2π/7

hoặc (k∈Z)

x = -13π/84 + k2π/7

25 tháng 8 2019

1) b) Ta có:

* 2π/5 < x < 6π/7

<=> 2π/5 < 5π/84 + k2π/7 < 6π/7

<=> 143π/420 < k2π/7 < 67π/84

<=> 143/120 < k < 67/24

=> k ϵ {2}

=> x = 53π/84

* 2π/5 < x < 6π/7

<=> 2π/5 < -13π/84 + k2π/7 < 6π/7

<=> 233/120 < k < 85/24

=> k ϵ {2; 3}

=> x = 5π/12 ; x = 59π/84

Vậy có tất cả 3 nghiệm thỏa mãn (2π/5;6π/7) là x = 53π/84; x = 5π/12 ; x = 59π/84.

1: ĐKXĐ: 3-cosx>0

=>cosx<3(luôn đúng)

2: ĐKXĐ: 1-sin 3x>=0

=>sin 3x<=1(luôn đúng)

3: ĐKXĐ: sin x<>0 và 2x<>pi/2+kpi

=>x<>kpi và x<>pi/4+kpi/2

4: ĐKXĐ: 2x-1>=0

=>x>=1/2