Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi ƯCLN[a,b]=d
a=dm,b=dn [ƯCLN[m,n]=1]
BCNN[a,b]=d.m.n
=>d+d.m.n=114
=>d.[m.n+1]=114
=>d thuộc Ư [114]= {1;2;3;6;19;38;57;114}
nếu d=1=>mn+1=114
=>mn=113=1.113
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của phạm văn quyết tâm - Toán lớp 6 - Học toán với OnlineMath
Giả sử d = (a;b). Khi đó ta có:
\(\hept{\begin{cases}a=md\\b=nd\end{cases}};\left(m;n\right)=1\Rightarrow\left[a;b\right]=mnd\)
Ta có: md+2nd=48 và 3mnd+d=114
md+2nd=48⇒d(m+2n)=48
3mnd+d=114⇒d(3mn+1)=114
Suy ra d∈ƯC(48,114)=(6;3;2;1)
Nếu d = 1, ta có: 3mn+1=114⇒3mn=113
Do 113 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 2 ta có: 3mn+1=57⇒3mn=56
Do 56 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 3 ta có: 3mn+1=38⇒3mn=37
Do 37 không chia hết cho 3 nên trường hợp này ko xảy ra.
Nếu d = 6 ta có: 3mn+1=19⇒3mn=18⇒mn=6
Và m+2n=8
Suy ra m = 2, n = 3 hoặc m = 6, n = 1
Vậy a = 12, b = 36 hoặc a = 36, b = 6.
hok tốt
Với \(a,b\inℕ\), \(ƯCLN\left(a,b\right)+3\cdot BCNN\left(a,b\right)=14\)
\(a+2b=48\) (2), từ đó, ta có: \(0\le a\le48,\text{ }0\le b\le24,\text{ }ƯCLN\left(a,b\right)\le14,\text{ }BCNN\left(a,b\right)\le4\)
Vì 2b là số chẵn, 48 là số chẵn nên a cũng phải là số chẵn, nên \(BCNN\left(a,b\right)\) cũng là số chẵn.
Với \(a=0,\text{ }b\ne0\), ta có: \(b=24\), \(ƯCLN\left(a,b\right)=24\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a\ne0,\text{ }b=0\), ta có: \(a=48\), \(ƯCLN\left(a,b\right)=48\) (không tmđk), \(BCNN\left(a,b\right)=0\)
Với \(a,b\ne0\), ta có: \(2\le a\le46,\text{ }1\le b\le23\)
\(1\leƯCLN\left(a,b\right)\le14,\text{ }2,\text{ }BCNN\left(a,b\right)\in\left\{2;4\right\}\)
TH1: Nếu \(BCNN\left(a,b\right)=2\) thì \(ƯCLN\left(a,b\right)=14-2\cdot3=8\)
\(BCNN\left(a,b\right)=2\) phải có ít nhất 1 số bằng 2, và số còn lại phải bằng \(Ư\left(2\right)=\left\{1;2\right\}\)
Mà \(ƯCLN\left(a,b\right)=8\) thì số 2 không chia hết cho 8
Nên trường hợp này \(a,b\in\varnothing\)
TH2: Nếu \(BCNN\left(a,b\right)=4\) thì \(ƯCLN\left(a,b\right)=14-4\cdot3=2\)
\(\Rightarrow a,b⋮2\)
\(BCNN\left(a,b\right)=4\) phải có ít nhất 1 số bằng 4, và số còn lại phải bằng \(Ư\left(4\right)=\left\{1;2;4\right\}\)
* Với \(a=4\), ta có: \(2b=44\Leftrightarrow b=22\) (không tmđk)
* Với \(b=4\), ta có: \(a=40\Leftrightarrow a=20\) (không tmđk)
Vậy trường hợp này \(a,b\in\varnothing\)
Vậy không thể tìm được a và b tự nhiên thoả mãn các điều kiện trên.