Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(p=2\)
\(\Rightarrow x^3=4+1=5\)
\(\Leftrightarrow x=\sqrt[3]{5}\left(ktm\right)\)
Xét \(p>2\Rightarrow p\)lẻ
Ta thấy \(2p+1\)lẻ với mọi \(p\)
\(\Rightarrow x^3\)lẻ \(\Leftrightarrow x\)lẻ
Đặt \(x=2a+1\)
\(\Rightarrow\left(2a+1\right)^3=2p+1\)
\(\Leftrightarrow8a^3+12a+6a+1=2p+1\)
\(\Leftrightarrow2a\left(4a^2+6a+3\right)=2p\)
\(\Leftrightarrow a\left(4a^2+6a+3\right)=p\)
Mà \(p\)là số nguyên tố
\(\Rightarrow a\left(4a^2+6a+3\right)=p\Leftrightarrow\orbr{\begin{cases}a=1\\a=p\end{cases}}\)
\(\left(+\right)a=1\Rightarrow1\left(4.1^2+6.1+3\right)=p\)
\(\Leftrightarrow p=13\left(tm\right)\Rightarrow x^3=2.13+1\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\left(tm\right)\)
\(\left(+\right)a=p\Rightarrow p\left(4p^2+6p+3\right)=p\)
\(\Leftrightarrow4p^2+6p+3=1\left(p>2\right)\)
\(\Leftrightarrow4p^2+4p+2p+2=0\)
\(\Leftrightarrow\left(4p+2\right)\left(p+1\right)=0\Leftrightarrow\orbr{\begin{cases}4p+2=0\\p+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}p=-\frac{2}{4}\left(ktm\right)\\p=-1\left(ktm\right)\end{cases}}\)
Vậy với p là số nguyên tố thì x = 3
Vì p là snt nên 2p+1 là số lẻ. Do đó x3 là một số lẻ và x là số lẻ
Ta đặt x=2k+1 (k thuộc N)
Khi đó 2p+1=2(2k+1)3=8k3+12k2+6k+1
Vậy đặt 2p=8k3+12k2+6k
<=> p=4k3+6k2+3k=k(4k2+6k+3)
Vì p là số nguyên tối nên k=1 do đó x=3
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
Vì 1 luôn bằng 1. Nên ta thay x =1;p=0. Vào biểu thức ta có:
x=2p+1
=>1=2.0+1=0+1=1
Vậy x=1 khi p=0.
Do 2p là số chẵn nên 2p+1 là số lẻ
=>x3 là số lẻ
=>x là số lẻ
Đặt x=2a+1. Ta có:
(2a+1)3=2p+1
<=>8a3+12a2+6a+1=2p+1
<=>8a3+12a2+6a=2p
<=>2a(4a2+6a+3)=2p
<=>a(4a2+6a+3)=p
Mà p là số nguyên tố nên suy ra a=1.
=>x=2a+1=2.1+1=2+1=3
Vậy x=3