K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2017

Ta có :

\(A=\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)

để A nguyên thì \(\frac{4}{\sqrt{x}-3}\)nguyên

\(\Rightarrow\)\(⋮\)\(\sqrt{x}-3\)

\(\Rightarrow\)\(\sqrt{x}-3\)\(\in\)Ư ( 4 ) = { 1 ; -1 ; 2 ; -2 ; 4 ; -4 }

Lập bảng ta có :

\(\sqrt{x}-3\)1-12-24-7
\(\sqrt{x}\)42517-4
x16425149\(\varnothing\)

Vậy ...

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

15 tháng 12 2015

\(x>3\)

\(A=\sqrt{\frac{x+1}{x-3}}=\sqrt{1+\frac{4}{x-3}}\in Z\)

khi \(1+\frac{4}{x-3}\) là số nguyên chính phương

=>x- 3 thuộc U(4) ={ 1;4} vì x-3>0

x-3 =1 => x =4  =>\(1+\frac{4}{x-3}\)=5 không là số chính phương ( loại)

x-3 =4 =>x=7 =>\(1+\frac{4}{x-3}\) = 2 không là số chính phương

Vậy không có giá trị nào của x thỏa mãn

15 tháng 12 2015

Mình làm rồi

chưa duyệt

KQ: không có x nào TM

NV
2 tháng 4 2020

ĐKXĐ: \(x>2\)

Xét \(\frac{x+1}{x-2}=1+\frac{3}{x-2}\)

Do \(x-2>0\Rightarrow\frac{3}{x-2}>0\Rightarrow1+\frac{3}{x-2}>1\)

\(x-2\ge1\Rightarrow\frac{3}{x-2}\le3\Rightarrow1+\frac{3}{x-2}\le4\)

\(\Rightarrow1< \frac{x+1}{x-2}\le4\Rightarrow1< A\le2\)

\(A\in Z\Rightarrow A=2\Rightarrow x=3\)