\(\overline{xyz}\) biết 3x=2y;4y=3z và \(\overline{xyz}⋮9\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

Theo đề thì 6x=4y=3z

Mà x+y+z phải chia hết cho 9 nên ta có

\(\frac{3}{4}z+\frac{1}{2}z+z⋮9\Leftrightarrow\frac{9}{4}z⋮9\)

mà \(z\le9\Rightarrow z\in\left\{4;8\right\}\)

Thay z=4 ta được y=3 ,x=2

Thay z=8 ta được y=6 ,x=4

Vậy .........

26 tháng 1 2017

Giải:

Ta có: \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-y+z}{2-3+5}=\frac{4}{4}=1\)

\(\left[\begin{matrix}\frac{x}{2}=1\\\frac{y}{3}=1\\\frac{z}{5}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\y=3\\z=5\end{matrix}\right.\)

Vậy \(x=2;y=3;z=5\)

14 tháng 7 2015

a)3576−xyz = xyzf b) 3x4y5 chia hết cho 9 và x - y = 2 \)

5 tháng 4 2018

ĐKXĐ: x, y, z ∈ N*

ko mất tính tổng quát, giả sử x ≤ y ≤ z

⇒ x + y + z ≤ 3z

⇒ xy ≤ 3 mà x, y, z ∈ N* ⇒ xy ≥ 1

Với xy = 3 ⇒ x = 1; y = 3 ⇒ 4 + z = 3z ⇒ z = 2 (vô lí vì y ≤ z)

Với xy = 2 ⇒ x = 1; y = 2 ⇒ 3 + z = 2z ⇒ z = 3 (thỏa mãn)

Với xy = 1 ⇒ x = y = 1 ⇒ 2 + z = z (vô lí)

Vậy xyz ∈ {123; 132; 231; 213; 321; 312}

21 tháng 7 2016

\(x:y:z=3:4:5\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)

\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)

\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)

\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)

Vậy x = 27 ; y = 36 ; z = 45

21 tháng 7 2016

\(x+y=3\left(x-y\right)\)

\(\Rightarrow x+y=3x-3y\)

\(\Rightarrow y+3y=3x-x\)

\(\Rightarrow4y=2x\)

\(\Rightarrow2y=x\)

\(\Rightarrow x:y=2\)

\(\Rightarrow x+y=2y+y=2\)

\(\Rightarrow3y=2\)

\(\Rightarrow y=\frac{2}{3}\)

\(\Rightarrow x=\frac{4}{3}\)

Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)

21 tháng 8 2019

1, \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)\(\Leftrightarrow\frac{x}{2}=\frac{y}{\frac{3}{2}}=\frac{z}{\frac{4}{3}}=k\)\(\Leftrightarrow\hept{\begin{cases}x=2k\\y=\frac{3}{2}k\\z=\frac{4}{3}k\end{cases}}\)

Mà xyz = -108

\(\Leftrightarrow2k.\frac{3}{2}k.\frac{4}{3}k=-108\)

\(\Leftrightarrow4k^3=-108\)

<=> k3 = -27

<=> k = -3

\(\Leftrightarrow\hept{\begin{cases}x=2k=2.-3=-6\\y=\frac{3}{2}k=\frac{3}{2}.\left(-3\right)=\frac{-9}{2}\\z=\frac{4}{3}k=\frac{4}{3}.\left(-3\right)=-4\end{cases}}\)

2, \(\frac{x}{5}=\frac{y}{7}=\frac{z}{8}\)\(\Leftrightarrow\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có: 

\(\frac{2x}{10}=\frac{3y}{21}=\frac{4z}{32}=\frac{2x+3y-4z}{10+21-32}=\frac{15}{-1}=-15\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=-15\\\frac{y}{7}=-15\\\frac{z}{8}=-15\end{cases}}\Rightarrow\hept{\begin{cases}x=-75\\y=-105\\z=-120\end{cases}}\)

21 tháng 8 2019

3, 3x = 5y \(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)\(\Leftrightarrow\frac{x}{55}=\frac{y}{33}\)

    2y = 11z \(\Leftrightarrow\frac{y}{11}=\frac{z}{2}\) \(\Leftrightarrow\frac{y}{33}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{55}=\frac{y}{33}=\frac{z}{6}\)\(\Rightarrow\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{110}=\frac{5y}{165}=\frac{z}{6}=\frac{2x+5y-z}{110+165-6}=\frac{34}{269}\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{55}=\frac{34}{269}\\\frac{y}{33}=\frac{34}{269}\\\frac{z}{6}=\frac{34}{269}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1870}{269}\\y=\frac{1122}{269}\\z=\frac{204}{269}\end{cases}}\)

4, \(\frac{x}{3}=\frac{2}{y}=\frac{z}{4}=k\)\(\Leftrightarrow\hept{\begin{cases}x=3k\\y=\frac{2}{k}\\z=4k\end{cases}}\)

Mà xyz = 240

<=> 3k . 2/k . 4k = 240

<=> 24k = 240

<=> k = 10

 \(\Leftrightarrow\hept{\begin{cases}x=3k=3.10=30\\y=\frac{2}{k}=\frac{2}{10}=\frac{1}{5}\\z=4k=4.10=40\end{cases}}\)

20 tháng 2 2019

\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)

\(5x=2z\Rightarrow\frac{x}{2}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow\left(2k\right)^3+\left(3k\right)^3-2k\cdot3k\cdot5k=40\)

\(\Rightarrow k^3\cdot8+k^3\cdot27-k^3\cdot30=40\)

\(\Rightarrow k^3\left(8+27-30\right)=40\)

\(\Rightarrow k^3=8\)

\(\Rightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}x=2\cdot2=4\\y=2\cdot3=6\\z=2\cdot5=10\end{cases}}\)

27 tháng 3 2021

Có xy+yz+zx=xyzxy+yz+zx=xyz⇔⇔xy+yz+zxxyz=1xy+yz+zxxyz=1⇔⇔1x+1y+1z=11x+1y+1z=1

x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)x2yy+2x+y2zz+2y+z2xx+2z=11x2+2xy+11y2+2yz+11z2+2zx≥91x2+1y2+1z2+2(1xy+1yz+1zx)

=9(1x+1y+1z)2=912=9=9(1x+1y+1z)2=912=9

Dấu "=" ko xảy ra ⇒⇒x2yy+2x+y2zz+2y+z2xx+2z>9