\(n\in N\)

\(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

      \(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)

\(\Rightarrow\left(4.9\right)^{15}< \left(2.3\right)^n< \left(18.2\right)^{16}\)

\(\Rightarrow36^{15}< 6^n< 36^{16}\)

\(\Rightarrow\left(6^2\right)^{15}< 6^n< \left(6^2\right)^{16}\)

\(\Rightarrow6^{30}< 6^n< 6^{32}\Rightarrow30< n< 32\)

Mà n là số tự nhiên nên n = 31

Chúc bạn học tốt.

15 tháng 8 2019

a. \(4^{15}.9^{15}< 2^n.3^n< 18^{16}.2^{16}\)

\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< \left(3^2\right)^{16}.2^{16}.2^{16}\)

\(\Rightarrow2^{30}.3^{30}< 2^n.3^n< 3^{32}.2^{32}\)

\(\Rightarrow30< n< 32\)

\(\Rightarrow n=31\)

Vậy : \(n=31\)

15 tháng 8 2019

\(n=0\Rightarrow b=3\)

Với \(n\ne0\Rightarrow VP⋮2butVT\) ko chia hết cho 2 nên ko thỏa mãn

Vậy \(n=0;b=3\)

25 tháng 7 2017

Bài 3: Tìm x:

a. \(\left(2x-1\right)^4=81\)

\(\Rightarrow\left(2x-1\right)^4=3^4\)

=> 2x - 1 = 3

=> 2x = 4

=> x = 2

b. \(\left(x-2\right)^2=1\)

\(\Rightarrow\) \(\left(x-2\right)^2=1^2\)

=> x - 2 = 1

=> x = 3

c. \(x^{2000}=x\)

=> x = 1

d. \(\left(4x-3\right)^3=-125\)

\(\Rightarrow\left(4x-3\right)^3=\left(-5\right)^3\)

=> 4x - 3 = -5

=> 4x = -2

=> x = \(\dfrac{-1}{2}\)

26 tháng 7 2017

came ơn bạn nhìu!!!!!!!!

Bài 2: 

1: \(5^n+5^{n+2}=650\)

\(\Leftrightarrow5^n\cdot26=650\)

\(\Leftrightarrow5^n=25\)

hay x=2

2: \(32^{-n}\cdot16^n=1024\)

\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)

hay n=-10

13: \(9\cdot27^n=3^5\)

\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)

=>3n=3

hay n=1

3 tháng 8 2015

\(\left(4.9\right)^{15}<\left(2.3\right)^n<\left(18.2\right)^{16}\)

\(36^{15}<6^n<36^{16}\)

\(\left(6^2\right)^{15}<6^n<\left(6^2\right)^{16}\)

\(6^{30}<6^n<6^{32}\)

\(\Rightarrow30

\(\Rightarrow n=31\)

 

20 tháng 9 2017

bn ơi con b) có vấn đề

2 tháng 10 2018

\(\left(2^5\right)^n.\left(2^4\right)^n=\left(2^9\right)^n=2^9\)

\(=>n=1\)

\(3< 3^n< 3^5\)

\(=>3^n=\left\{3^2,3^3,3^4\right\}\)

\(=>n=2,3,4\)

6 tháng 3 2020

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)

\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{n}\)

\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2

Vậy S không là số tự nhiên