\(y=\sqrt[3]{20+\sqrt{10x+2}}+\sqrt[3]{20-\sqrt{10x+2}}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Câu 1:

ĐK: \(4\leq x\leq 6\)

Ta thấy biểu thức vế trái luôn không âm theo tính chất căn bậc 2

Vế phải: \(x^2-10x-27=x(x-10)-27< 0-27< 0\) với mọi \(4\leq x\leq 6\), tức là biểu thức vế phải luôn âm

Do đó pt vô nghiệm

AH
Akai Haruma
Giáo viên
5 tháng 10 2018

Câu 2:

\(x\geq -3; y\geq 3; z\geq 3\)

Ta có: \(\sqrt{x+3}+\sqrt{y-3}+\sqrt{z-3}=\frac{1}{2}(x+y+z)\)

\(\Leftrightarrow 2\sqrt{x+3}+2\sqrt{y-3}+2\sqrt{z-3}=x+y+z\)

\(\Leftrightarrow (x+3-2\sqrt{x+3}+1)+(y-3-2\sqrt{y-3}+1)+(z-3-2\sqrt{z-3}+1)=0\)

\(\Leftrightarrow (\sqrt{x+3}-1)^2+(\sqrt{y-3}-1)^2+(\sqrt{z-3}-1)^2=0\)

\((\sqrt{x+3}-1)^2; (\sqrt{y-3}-1)^2; (\sqrt{z-3}-1)^2\) đều không âm nên để tổng của chúng bằng $0$ thì:

\((\sqrt{x+3}-1)^2=(\sqrt{y-3}-1)^2=(\sqrt{z-3}-1)^2=0\)

\(\Rightarrow x=-2; y=z=4\)

14 tháng 1 2017

Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)

\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)

\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)

Thế vào P ta được

\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)

\(=x^4+2x^2-6x+2014\)

\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

10 tháng 12 2017

Ta có: √x+1+√y−1≤√2(x+y)

⇔√2(x−y)2+10x−6y+8≤√2(x+y)

⇔2(x−y)+10x−6y+8≤2(x+y)

⇔2(x−y)2+8(x−y)+8≤0

⇔2(x−y+2)2≤0

Dấu = xảy ra khi {

x+1=y−1
x−y+2=0

⇔y=x+2

Thế vào P ta được

P=x4+(x+2)2−5x−5(x+2)+2020

=x4+2x2−6x+2014

=(x2−1)2+3(x−1)2+2010≥2010

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

23 tháng 10 2018

\(\sqrt{2\sqrt{3}-3}=\sqrt{3x\sqrt{3}}-\sqrt{y\sqrt{3}}\)

\(\Leftrightarrow\sqrt{2-\sqrt{3}}=\sqrt{3x}-\sqrt{y}\Leftrightarrow2-\sqrt{3}=3x+y-2\sqrt{3xy}\)

\(\Leftrightarrow3x+y-2=2\sqrt{3xy}-\sqrt{3}\)(1)

Để phương trình đầu có nghiệm hữu tỉ=> phương trình (1) có nghiệm hữu tỉ x,y

\(\Rightarrow\hept{\begin{cases}2\sqrt{3xy}-\sqrt{3}=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2\sqrt{xy}-1=0\\3x+y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=\frac{1}{4}\\y=2+3x\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(2-3x\right)=\frac{1}{4}\\y=2-3x\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}12x^2-8x+1=0\\y=2-3x\end{cases}}\)

phân tích thành nhân tử r làm tiếp nhé

10 tháng 10 2019

Theo giả thiết \(\sqrt{\frac{yz}{x}}+\sqrt{\frac{xz}{y}}+\sqrt{\frac{xy}{z}}=3\)

\(\Rightarrow\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}+2x+2y+2z=9\)

Mặt khác , ta có BĐT phụ : \(\frac{yz}{x}+\frac{xz}{y}+\frac{xy}{z}\ge x+y+z\)

\(\Rightarrow9\ge3\left(x+y+z\right)\)

\(\Leftrightarrow x+y+z\le3\)

Áp dụng BĐT Cauchy Shwarz \(\Rightarrow\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\le3\left(x+y+z\right)\le9\)

\(\Rightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\)

Ta có : \(P=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{2016}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\frac{2007}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

\(\ge2.\sqrt{9}+\frac{2007}{3}=675\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=1\)

Chúc bạn học tốt !!!

áp dụng bđt cô si ta có:

\(xy\le\frac{x^2+y^2}{2};yz\le\frac{y^2+z^2}{2};zx\le\frac{z^2+x^2}{2}\)

\(\Rightarrow A\ge\sqrt{\frac{x^2+y^2}{2}}+\sqrt{\frac{y^2+z^2}{2}}+\sqrt{\frac{z^2+x^2}{2}}\)

theo bunhia thì \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2;2\left(y^2+z^2\right)\ge\left(y+z\right)^2;2\left(z^2+x^2\right)\ge\left(z+x\right)^2\)

\(\Rightarrow A\ge\sqrt{\frac{\left(x+y\right)^2}{4}}+\sqrt{\frac{\left(y+z\right)^2}{4}}+\sqrt{\frac{\left(z+x\right)^2}{4}}=\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z=1\)

Vậy \(Min_A=1\Leftrightarrow x=y=z=\frac{1}{3}\)

24 tháng 10 2016

Ta có \(\sqrt{1+x^2}+\sqrt{2x}\le\sqrt{2}\left(x+1\right)\)

\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\)

\(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+\sqrt{2x}+\sqrt{2y}+\sqrt{2z}\le\sqrt{2}\left(x+y+z+3\right)\le6\sqrt{2}\)

Ta lại có \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le\sqrt{3\left(x+y+z\right)}\le3\)

Theo đề bài ta có

\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)

\(\le6\sqrt{2}+\left(3-\sqrt{2}\right)\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\le3\sqrt{2}+9\)

Dấu = xảy ra khi x = y = z = 1