K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Điều kiện đã cho \(\Leftrightarrow7\left(x-2019\right)^2+y^2=23\) (*)

Do \(\left(x-2019\right)^2,y^2\ge0\) nên (*) suy ra \(y^2\le23\Leftrightarrow y^2\in\left\{0,1,4,9,16\right\}\)

\(\Leftrightarrow y\in\left\{0,1,2,3,4\right\}\)

Hơn nữa, lại có \(y^2=23-7\left(x-2019\right)^2\). Ta thấy \(VP\) chia 7 dư 2.

\(\Rightarrow y^2\) chia 7 dư 2 \(\Rightarrow y\in\left\{3,4\right\}\)

Xét \(y=3\) \(\Rightarrow7\left(x-2019\right)^2=14\) \(\Leftrightarrow\left(x-2019\right)^2=2\), vô lí.

Xét \(y=4\Rightarrow7\left(x-2019\right)^2=7\) \(\Leftrightarrow\left(x-2019\right)^2=1\) \(\Leftrightarrow\left[{}\begin{matrix}x=2020\\x=2018\end{matrix}\right.\)

Vậy \(\left(x,y\right)\in\left\{\left(4;2020\right),\left(4;2018\right)\right\}\) thỏa mãn ycbt.

28 tháng 6 2016

\(\Leftrightarrow7\left(x-2004\right)^2=23-y^2\)(1)

Vì \(y^2\ge0\forall y\Rightarrow23-y^2\le23\forall y\)

\(\Rightarrow7\left(x-2004\right)^2\le23\)

\(\Rightarrow\left(x-2004\right)^2\le\frac{23}{7}< 4\)

Mà \(\left(x-2004\right)^2\ge0\forall x\Rightarrow0\le\left(x-2004\right)^2< 4\)

Trong đoạn [0;4) chỉ có 2 số chính phương là 0 và 1 nên:

  • Nếu x-2004=0 => y2 = 23 - không có y thuộc N thỏa mãn.
  • Nếu (x-2004)2 = 1 thì x = 2005 hoặc x = 2003. Khi đó y2 = 16 mà y thuộc N nên y = 4.

Vậy có 2 nghiệm TM PT là (x=2003;y=4) và (x=2005;y=4).

28 tháng 6 2016

7(x-2004)^2 >= 0

-> 23 - y^2 >= 0. Suy ra y^2 <= 23

Ta có: 7(x-2004)^2= 23-y^2 -> 23-y^2 chia hết 7. Tức 23-y^2 là bội của 7. 

Các bội của 7 < 23 là: 0;7;14;21. => y^2={23;16;9;2}

Mà y là số tự nhiên nên y^2={16;9} nên y=4 hoặc 3

Chia 2 trường hợp

-Nếu y=4:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-16

7(x-2004)^2=7 => (x-2004)^2=1 thì x-2004=1 hoặc -1. Suy ra x=2005 hoặc 2003

-Nếu y=3:

7(x-2004)^2=23-y^2

7(x-2004)^2=23-9

7(x-2004)^2=14 => (x-2004)^2=2. Không tồn tại trường hợp này vì ko có số tự nhiên nào có bình phương=2

vậy có 1 trường hợp: y=4 và x={2003;2005}

Chúc bạn học tốt

15 tháng 1 2020

d. Câu hỏi của Black - Toán lớp 7 - Học toán với OnlineMath

Ta có:

\(y^2\ge0\Rightarrow23-y^2\le23-0=23\Rightarrow7\left(x-2004\right)^2\le23\Rightarrow\left(x-2004\right)^2\le3\Rightarrow\left[{}\begin{matrix}\left(x-2004\right)^2=0\\\left(x-2004\right)^2=1\end{matrix}\right.\)TH1:\(\left(x-2004\right)^2=0\)\(\Rightarrow x-2004=0\Rightarrow x=2004\Rightarrow y=\sqrt{23}\), vô lý

TH2:\(\left(x-2004\right)^2=1\)\(\Rightarrow\left[{}\begin{matrix}x-2004=-1\Rightarrow x=2003\Rightarrow y=4\\x-2004=1\Rightarrow x=2005\Rightarrow y=4\end{matrix}\right.\)

Vậy (x, y )ϵ{(2003; 4); (2005; 4)}

5 tháng 2 2016

  Cơ bản mà chẳng cần phân tích gì 
7(x-2004)^2=23-(y^2) 
<=> 
7(x-2004)^2+y^2=23 
vế trái yrở thành tổng hai số không âm 
|(x-2004)|<=1 vì 7.2^2=28>23 
=== 
•x=2004=>loại vì y^2=23 không nguyên 
•x=2003 ; 2005=>y^2=23-7=16 
=>y=4 
kl 
x=2003&2005 
y=4

5 tháng 2 2016

7(x-2004)^2=23-(y^2) 
<=> 
7(x-2004)^2+y^2=23 
vế trái yrở thành tổng hai số không âm 
|(x-2004)|<=1 vì 7.2^2=28>23 
=== 
•x=2004=>loại vì y^2=23 không nguyên 
•x=2003 ; 2005=>y^2=23-7=16 
=>y=4 
kl 
x=2003&2005 
y=4

21 tháng 12 2018

Zô câu hỏi tương tự đi 

21 tháng 12 2018

Dễ thấy rằng: 8(x-100)^2 chia hết cho 8

=>  y^2 chia 8 dư 1

=> y E {1;3;5} (vì y^2 =< 25)

+) y=1 khi đó: 24=8(x-100)^2

=> 3=(x-100)^2 (3 không là số chính phương) (loại)

+) y=3 khí đó: 25-y^2=16=>(x-100)^2=2

2 không là số chính phương (loại)

+) y=5=> (x-100)^2=0

=> x=100 (thỏa mãn)

Vậy: y=5;x=100