Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là a.
Vì a chia 7 dư 5 nên \(\left(a+9\right)⋮7\)
Vì a chia 13 dư 4 nên \(\left(a+9\right)⋮13\)
\(\Rightarrow a+9\in BC\left(7,13\right)\)
Ta có: \(\left[7,13\right]=7.13=91\)
\(\Rightarrow a+9\in B\left(91\right)\Leftrightarrow a+9=91k\)
\(\Leftrightarrow a=91k-9\)
\(\Leftrightarrow a=91\left(k-1\right)+82\)
Vậy số đó chia 91 dư 82.
đây mà là bài của lớp 6
lớp 5 đã có rồi chắc chết thôi dễ mà còn đăng đăng đây là chỉ đăng các bài khó thôi nhé bn tự giải đi
đây chính xác là đúng bữa sau tao có bài đó tao lên cho
Lười wá! Chtt có câu y hệt lun, có cả lời giải lun đấy, chị k muốn viết nhiu
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
anh em làm nhanh nào
cơ hội hiếm có đừng bỏ lỡ
tích cực lên nào