Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3(n + 2) chia hết cho n - 2
=> 3(n - 2 + 4) chia hết cho n - 2
=> 12 chia hết cho n - 2
=> n - 2 thuộc Ư(12) = { -12; -6; -4; -3; -2; -1; 1; 2; 3; 4; 6; 12 }
=> n thuộc {-10; -4; -2; -1; 0; 1; 3; 4; 5; 6; 8; 14}
Giải:
Ta có: \(3\left(n+2\right)⋮n-2\)
\(\Rightarrow3n+6⋮n-2\)
\(\Rightarrow\left(3n-6\right)+12⋮n-2\)
\(\Rightarrow3\left(n-6\right)+12⋮n-2\)
\(\Rightarrow12⋮n-2\)
\(\Rightarrow n-2\in\left\{1;2;4;6;12\right\}\)
\(\Rightarrow n\in\left\{3;4;6;14\right\}\)
Vậy...
3(n + 2) chia hết cho n - 2
3(n - 2 + 4) chia hết cho n - 2
3(n - 2) + 3.4 chia hết cho n - 2 {dùng tính chất phân phối}
=> 12 chia hết cho n - 2
=> n - 2 thuộc Ư(12) = {1 ; 2 ; 3 ; 4 ; 6 ; 12}
Xét 6 trường hợp , ta có :
n - 2 = 1 => n = 3
n - 2 = 2 => n = 4
n - 2 = 3 => n = 5
n - 2 = 4 => n = 6
n - 2 = 6 => n = 8
n - 2 = 12 => n = 14
a, \(n+3⋮n-1\)
\(n-1+4⋮n-1\)
\(4⋮n-1\)hay \(n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
n - 1 | 1 | 2 | 4 |
n | 2 | 3 | 5 |
\(4n+3⋮2n+1\Leftrightarrow2\left(2n+1\right)+1⋮2n+1\Leftrightarrow1⋮2n+1\)
Lập bảng tương tự
\(4n-12⋮3n+1\)
\(\Rightarrow3\left(4n-12\right)⋮3n+1\)
\(\Rightarrow12n+4-40⋮3n+1\)
\(\Rightarrow4\left(3n+1\right)-40⋮3n+1\)
\(\Rightarrow40⋮3n+1\) (Vì \(4\left(3n+1\right)⋮3n+1\))
\(\Rightarrow3n+1\inƯ\left(40\right)=\left\{1;2;4;5;8;10;20;40\right\}\)
\(\Rightarrow3n\in\left\{0;1;3;4;7;9;19;39\right\}\)
Mà n \(\in\) N nên 3n \(⋮\) 3 \(\Rightarrow3n\in\left\{0;3;9;39\right\}\)
\(\Rightarrow n\in\left\{0;1;3;13\right\}\)
n+5 chia het cho n-3
=>n-3+8 chia het cho n-3
=>8 chia het cho n-3
=>n-3 E Ư(8)={1;2;4;8}
=> n E {4;5;7;11}
Ta có:
\(n^2+n+3⋮n+1\)
\(\Leftrightarrow n\left(n+1\right)+3⋮n+1\)
\(\Leftrightarrow3⋮n+1\) (vì \(n\left(n+1\right)⋮n+1\))
\(\Leftrightarrow n+1\inƯ\left(3\right)=\left\{1;3\right\}\)
\(\Leftrightarrow n\in\left\{0;2\right\}\)
Vậy...