Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của trần như - Toán lớp 7 - Học toán với OnlineMath
Bài 1 em tham khảo tại link trên nhé.
+) Nhận xét: Với n thuộc N ta có : n3 - n = n(n2 - 1) = n.(n - 1).(n + 1)
n - 1; n ; n + 1 là 3 số tự nhiên liên tiếp nên tích n(n-1).(n+1) chia hết cho 6 => n3 - n chia hết cho 6
Xét S - N = (n13+n23+...+nk3 ) - (n1+n2+n3+...+nk) = (n13 - n1) + (n23 - n2) + ...+ (nk3 - nk)
từ nhận xét trên => n13 - n1 chia hết cho 6; n23 - n2 chia hết cho 6 ;...; nk3 - nk chia hết cho 6
=> S - N chia hết cho 6
=> S và N có cùng số dư khi chia cho 6
Xét N = 20152016 chia cho 6
Có: 2015 đồng dư với 5 (mod 6)
=> 20152 đồng dư với 52 (mod 6); 52 đồng dư với 1 (mod 6)
=> 20152 đòng dư với 1 (mod 6)
=> 20152016 = (20152)1008 đồng dư với 11008 = 1(mod 6)
=> N chia cho 6 dư 1 => S chia cho 6 dư 1
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083
Để tính S1 + S2 + S3 + ... + S2013 ta tìm số lần xuất hiện chữ số 0; 1;2;...9 từ 000 đến 1999
+) Từ 000 đến 999: có 1000 số. mỗi số có 3 kí tự => có tất cả 3.1000 = 3000 kí tự
trong đó số lần xuất hiện các kí tự 0;1;2;..;9 như nhau
=>Mỗi Số 0;1;...;9 xuất hiện 3000 : 10 = 300 lần
+) Từ 1000 đến 1999: Theo trên , ta có Mỗi số 0;2;3;..;9 cũng xuất hiện 300 lần
riêng số 1 xuất hiện 300 + 1000 = 1300 lần (Do tính số 1 đứng ở hàng nghìn)
Vậy Từ từ 000 đến 1999 : số 1 xuất hiện 1600 lần; các số 0;;2;3;...;9 đều xuất hiện 600 lần
+) từ 2000 đến 2013 có:
S2000 + ...+ S2009 = (2+ 0+ 0 + 0) + (2+0+0+1)...+(2+0+0+9)+(2+0+1+0) +(2+0+1+1)+(2+0+1+2) +(2+0+1+3)
= 2.14 + (1+2+3+..+9) + 1+2+3+4 = 28 + 45 + 10 = 83
Vậy S1 + S2 + S3 + ... + S2013 = 1600 .1 + 600. (0+ 2+3+4+..+9) + 83 = 1600 + 600.44 + 83 = 28083 **** ☺
Để một tổng các số tự nhiên là số lẻ thì số lần xuất hiện số lẻ phải là một số lẻ.
Giả sử trong 10 số n1 , n2 , n3 ,..., n10 có 2k + 1 số lẻ
Vì bình phương số lẻ là số lẻ nên trong tổng S cũng có 2k + 1 số lẻ. Vậy S là một số lẻ.
Từ đó suy ra (S - 1) chia hết cho 2.
\(S_{\left(n\right)}=n^2-2017n+10\)
Vì S(n) là tổng các chữ số \(\Rightarrow S_{\left(n\right)}>0\)
hay \(n^2-2017n+10\)\(>0\)
\(\Rightarrow\)\(\frac{n^2+10}{n}\)\(>2017\)
\(\Rightarrow\)\(n+\frac{10}{n}\)\(>2017\)
\(\Rightarrow n\ge2017^{\left(1\right)}\)
Có :\(S_{\left(n\right)}< n\)
hay \(n^2-2017n+10< n\)
\(\Rightarrow n^2+10>2017n+n\)
\(\Rightarrow n^2+10< 2018n\)
\(\Rightarrow\frac{n^2+10}{n}< 2018\)
\(\Rightarrow\frac{10}{n}+n< 2018\)
\(\Rightarrow n< 2018^{\left(2\right)}\)
Từ (1) và (2)
\(\Rightarrow n=2017\)
Ai thấy đk thì k cho mk 1 cái, mk cảm ơn!
a) 32 < 2n < 128
25 < 2n < 27
=> 2n = 26
=> n = 6
Vậy n = 6
b) 9 . 27 \(\le\) 3n \(\le\)243
=> 243 \(\le\)3n \(\le\)243
=> 35 \(\le\)3n \(\le\)35
=> 3n = 35
=> n = 5
Vậy n = 5
Ủng hộ mk nha !!! ^_^
Ta có 3 trường hợp:
+) Nếu \(1\le n\le2016\) thì ta có:
\(S_{\left(n\right)}=n^2-2017n+10< n^2-2017n+2016\)
\(=\left(n-1\right)\left(n-2016\right)\ge0\) (loại)
+) Nếu \(n=2017\) thì ta có:
\(S_{\left(n\right)}=S_{\left(2017\right)}=10=n^2-2017n+10\) (nhận)
+) Nếu \(n>2017\) thì ta có:
\(S_{\left(n\right)}=n^2-2017n+10>n\left(n-2017\right)>n\) (loại)
Vậy \(n=2017\)