Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
a) \(n^2+12n=n\left(n+12\right)\)
- \(n\ge1\)
- \(n+12\ge13\)
Để n2+12n nguyên tố thì n2+12n chỉ có 2 ước là 1 và chính nó
\(\Rightarrow\hept{\begin{cases}n=1\\n+12=n^2+12n\end{cases}}\)
Vậy n=1
b)\(3^n+6=3\left(3^{n-1}+6\right)\) với \(3^{n-1}+6\ge1\)
Để 3n+6 là số nguyên tố thì 3n+6 chỉ có ước là 1 và chính nó
=>\(\hept{\begin{cases}3^n+6=3\\3^{n-1}+6=1\end{cases}}\)=> Không có số n thỏa mãn
Ta thấy để p là nguyên tố thì n-2 =1 hoặc n^2 +n -1 =1
Vì nếu 2 số lớn hơn 1 thì p là hợp số
do luôn có n^2 +n - 1 > n -2
=> n-2 =1 => n=3
=> p =11
do p là snt nên có ước là 1 và chính nó mà n-2<n2+n-1
=>n-2=1
=>n=1+2=3
thay vào thì p=11 là snt
vậy p=3
Vì A là snt nên A có 2 ước nguyên tố là 1 và chính nó.
Bởi vậy một trong hai nhân tử là n và (n^2+n+1) phải bằng 1
Xét n=1\(\Rightarrow A=1\times\left(1^2+1+1\right)=3\)hợp lí
xét (n^2+n+1) = 1
\(\Rightarrow n^2+n=0\Rightarrow n=0\)
\(\Rightarrow A=0\times\left(0^2+0+1\right)=0\)vô lý
\(\Rightarrow n=1,A=3\)