Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
4n+10 chia hết cho 2n+1
=>
4n+10=
( 2n+1)x2+8
=>(2n+1)x2+8 chia hết cho 2n+1
ma (2n+1)x2 chia hết cho 2
=>8 chia hết cho 2n+1
mà 8 chia hết cho:1;2;4;8
2n+1 n 1 0 2 loai 4 loai 8 loai
=>vay n=0
4n + 10 chia hết cho 2n+1 thì 2(4n +10) cũng chia hết cho 4(2n+1)
xét hiệu ta có 8n+20 - 8n-4 = 16
vì 4n+10 chia hết cho 2n+1 nên 2(4n+10) chia hết cho 2n+1
4(2n+1) chia hết cho 2n+1
=> 16 chia hết cho 2n+1
vậy 2n+1 thuộc ước của 16
4n-4\(⋮\)2n-1
Ta có:2n-1\(⋮\)2n-1
=>2.(2n-1)\(⋮\)2n-1
=>4n-2\(⋮\)2n-1(1)
Theo bài ta có:4n-4\(⋮\)2n-1(2)
Từ (1) và(2) suy ra (4n-2)-(4n-4)\(⋮\)2n-1
=>4n-2-4n+4\(⋮\)2n-1
=>2\(⋮\)2n-1
=>2n-1\(\in\)Ư(2)={1;2}
+2n-1=1=>2n=1+1=>2n=2=>n=2:2=>n=1\(\in\)N
+2n-1=2=>2n=2+1=>2n=3=>n=3:2=>n=1,5\(\in\)\(\varnothing\)
Vậy n=1
Ta có: 4n+3=2(2n+1) +1
Vì 2(2n+1) chia hết 2n+1
=>1 chia hết 2n+1
=>2n+1\(\in\)Ư(1)
Mà Ư(1)={1}
Do đó , ta có:
2n+1=1
2n =0
n=0
Vậy n=0
4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
Vì 4n+2 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)
=> 2n+1 thuộc {1; -1}
=> 2n thuộc {0; -2}
=> n thuộc {0; -1}