\(\frac{2n+15}{n+1}\) là số tự nhiên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

\(\frac{2n+15}{n+1}=\frac{2n+2+13}{n+1}=\frac{2\left(n+1\right)+13}{n+1}=2+\frac{13}{n+1}\)

Để \(2+\frac{13}{n+1}\) là số nguyên <=> \(\frac{13}{n+1}\) là số nguyên

=> n + 1 thuộc Ư(13) = { - 13; - 1; 1; 13 }

=> n = { - 14 ; - 2; 0 ; 12 }

27 tháng 2 2017

Để \(\frac{n+6}{15}\) là số tự nhiên <=> n + 6 ⋮ 15 => n + 6 = 15k => n = 15k - 6 ( k thuộc N ) (1)

Ta có : \(\frac{3n-2}{n+1}=\frac{3n+3-5}{n+1}=\frac{3\left(n+1\right)-5}{n+1}=3-\frac{5}{n+1}\)

Để \(3-\frac{5}{n+1}\)là số tự nhiên <=> \(\frac{5}{n+1}\)là số tự nhiên

=> n + 1 là ước của 5 => Ư(5) = { - 5; - 1; 1; 5 }

=> n + 1 = { - 5; - 1; 1; 5 }

=> n = { - 6; - 2; 0; 4 }

Mà theo (1) , n phải có dạng 15k - 6 => n = - 6

Mà theo đề bài n là số tự nhiên nên n không tồn tại

1 tháng 3 2017

Cho phân số : \(\frac{1+2+3+...+20}{6+7+8+...+36}\)

Hãy xóa một số hạng ở mẫu của phân số trên để giá trị của phân số đó không không đổi

               Gọi d là ước chung nguyên tố của 2n + 1 và n + 2

          Ta có : 2n + 1 và n + 2 chia hết cho d

                  => 2n + 1 và 2n + 4 chia hết cho d

                  =>(2n + 4) - (2n + 1) chia hết cho d

                  =>       3 chia hết cho d   => d = 3

          Để p/s tối giản thì d ko bằng 3

                  => 2n + 1 ko chia hết cho 3

                  => 2n + 1 - 3 ko chia hết cho 3

                  =>  2n - 2 ko chia hết cho 3

                  => 2.(n - 1) ko chia hết cho 3

                  =>    n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)

                  => n ko bằng 3k + 1(k thuộc Z)

          Vậy với n ko bằng 3k + 1 thì p/s tối giản

              

13 tháng 4 2023

  Gọi d là ước chung nguyên tố của 2n + 1 và n + 2

          Ta có : 2n + 1 và n + 2 chia hết cho d

                  => 2n + 1 và 2n + 4 chia hết cho d

                  =>(2n + 4) - (2n + 1) chia hết cho d

                  =>       3 chia hết cho d   => d = 3

          Để p/s tối giản thì d ko bằng 3

                  => 2n + 1 ko chia hết cho 3

                  => 2n + 1 - 3 ko chia hết cho 3

                  =>  2n - 2 ko chia hết cho 3

                  => 2.(n - 1) ko chia hết cho 3

                  =>    n - 1 ko chia hết cho 3 (vì 2 và 3 nguyên tố cùng nhau)

                  => n ko bằng 3k + 1(k thuộc Z)

          Vậy với n ko bằng 3k + 1 thì p/s tối giản

23 tháng 6 2018

Ta có: (2n+1) chia hết cho (n+2)

=>2(n+2)-3 chia hết cho n+2

=>-3 chia hết cho n+2

=> n+2 thuộc Ư(-3)

ta có bảng sau:

n+23-31-1
n1-5-1-3

vậy n thuộc tập hợp {1; -3; -1; -5} thì n rút gọn được

8 tháng 3 2018

mk bt làm ƯCLN của 2n+1 và n+2\(\in\)(1,3 rồi các bạn chỉ cần trình bày đoạn sau thui

14 tháng 5 2017

a, Để\(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên  thì 2n+3 \(⋮\) 4n+1 

Ta có   2n+3 \(⋮\)4n+1

 =>      4n+6 \(⋮\)4n+1

=> (4n+1)+5 \(⋮\)4n+1

=>            5 \(⋮\)4n+1 => 4n+1 \(\in\)Ư(5) => 4n+1 \(\in\){ -1;-5;1;5 }

Ta có bảng :

4n+1-1-515
4n-2-604
nkhông cókhông có0            1          

Mà n \(\in\)N

+ Nếu n = 0 ta có \(\frac{2.0+3}{4.0+1}\)=\(3\)(chọn)

+ Nếu n = 1 ta có \(\frac{2.1+3}{4.1+1}=5\) (chọn )

Vậy n=0 hoặc n=1 thì phân số \(\frac{2n+3}{4n+1}\)có giá trị là số tự nhiên 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

b, Gọi d \(\in\)UC(2n+3;4n+1)

Ta có  2n+3 \(⋮\)d => 2.(2n+3)\(⋮\)d

          4n+1 \(⋮\)d

Suy ra 2(2n+3) - (4n+1) \(⋮\)d

              4n+6 - 4n+1   \(⋮\)d

                            5     \(⋮\)d => d \(\in\)Ư(5) => d\(\in\){ -1 ; -5; 1 ; 5 }

+ Nếu 2n+3 \(⋮\)5 => 6n +9 \(⋮\)5

                            (5n+5).(n+4) \(⋮\)5

                                       n+4 \(⋮\)5 => n = 5k - 4 (k \(\in\)N*)

Thì 4n+1 = 4(5k - 4) +1= 20k - 16 +1 = 20k -15 \(⋮\)5

Vậy n \(\ne\) 5k - 4 (k \(\in\)N*) thì phân số \(\frac{2n+3}{4n+1}\)tối giản 

24 tháng 7 2017

1, A=\(\frac{2n+3}{\text{4n + 1}}\)

A=\(\frac{4n+6}{\text{4n + 1}}\)

A=\(\frac{4n+1+5}{\text{4n + 1}}\)

A=1+\(\frac{5}{\text{4n + 1}}\)

Để A là số tự nhiên\(\Leftrightarrow\)1+\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\)\(\frac{5}{\text{4n + 1}}\) là số tự nhiên \(\Leftrightarrow\) 5\(⋮\)(4n+1)\(\Leftrightarrow\)(4n+1)\(\in\)Ư(5)={-5;-1;1;5}\(\Leftrightarrow\)4n\(\in\){-6;-2;0;4}\(\Leftrightarrow\)n\(\in\){\(\frac{-3}{2}\);\(\frac{-1}{2}\);0;1}. Mà n là số tự nhiên nên n\(\in\){0;1}.

Vậy n\(\in\){0;1} thì A là số tự nhiên

18 tháng 2 2017

Bài 1:

ĐKXĐ:\(n\ne-2\)

Ta có:\(\frac{n-1}{n+2}=1-\frac{3}{n+2}\)

Để phân số đó nguyên thì \(n+2\inƯ\left(3\right)\)

                          => \(n+2=\left\{-3;-1;1;3\right\}\)

                           => \(n=\left\{-5;-3;-1;1\right\}\)

Mà \(n\in N\)=> n=1

Bài 2:

ĐKXĐ \(a\ne1;-1\)

Để \(\frac{21}{a}\in N\)

Thì \(a\inƯ\left(21\right)\)

=>a={1;3;7;21} (1)

Để \(\frac{22}{a-1}\in N\)thì \(a-1\inƯ\left(22\right)\)

=>a-1={1;2;11;22}

=>a={1;3;12;23}   (2)

Để \(\frac{24}{a+1}\in N\)Thì \(a+1\inƯ\left(24\right)\)

=> a+1={1;2;4;6;12;24}

=>a={0;1;3;5;11;23}   (3)

Kết hợp (1);(2);(3) và ĐKXĐ ta có a=3 thì cả 3 phân số trên là số tự nhiên

18 tháng 2 2017

ko bit