Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+2019 chia ch 4 dư 3
mà số chính phương chia cho 4 dư 0,1
=> không tồn tại n
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
P=(n^4+n^3)+(n^3+n^2)+(n^2+n)+(n+1)
P=n^3(n+1)+n^2(n+1)+n(n+1)+(n+1)
P=(n^3+n^2+n+1)(n+1)
P=[(n^3+n^2)+(n+1)](n+1)
P=[n^2(n+1)+(n+1)](n+1)
P=[(n^2+1)(n+1)](n+1)
P=(n^2+1)(n+1)^2
Mà P là số chính phương , (n+1)^2 là số chính phương
=> n^2+1 là số chính phương
=> n^2+1=a^2(a là số nguyên)
=> n^2-a^2=-1
=>(n+a)(n-a)=-1
mà n là số tự nhiên, a là số nguyên=> n+a,n-a là số nguyên
=> n+a=-1 ; n-a=1 hoặc n+a=1; n-a=-1
=> n=0; a=-1 hoặc n=0; a=1
Vậy n=0
Đang bận nên hướng dẫn
a )Đặt \(n^2-n+2=a^2\) (a thuôc Z)
\(\Leftrightarrow4n^2-4n+8=4a^2\)
\(\Leftrightarrow\left(4n^2-4n+1\right)-4a^2+7=0\)
\(\Leftrightarrow\left(2n-1\right)^2-\left(2a\right)^2=-7\)
\(\Leftrightarrow\left(2n-2a-1\right)\left(2n+2n-1\right)=-7\)
Đến đây phân tích ước của 7 ra ; tự lm đc
b) Ta có : \(n^5-n=n\left(n^4-1\right)=n\left(n^2+1\right)\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Ta thấy tổng trên chia hết cho 2 và 5 nên \(n^5-n\) chia hết cho 10
=> \(n^5-n+2\) có chữ số tận cùng là 2 ko phải số CP