Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A> / x-1+5-x/
A>hoặc =/ 4/
Min A= 4 đạt đc khi x-1 và 5-x cùng dấu
th1: Nếu \(\hept{\begin{cases}x-1>0\\5-x>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>=2\\x< =5\end{cases}}\)( lớn ( bé) hơn hoặc =)
\(\Rightarrow x\in1,2,3,4,5\)
th2: Nếu \(\hept{\begin{cases}x-1< 0\\5-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>5\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vậy...........
B= /x+1/+ /x-8/
Ta có: x-8 và 8-x là 2 số đối nhau \(\Rightarrow\)/x-8/=/8-x/
\(\Rightarrow\)B= /x+1/+/8-x/
B > /x+1+8-x/
B >=9
Min 9 đạt đc khi x+1 và 8-x cùng dấu.
th1: Nếu \(\hept{\begin{cases}x+1>0\\8-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>=-1\\x< =8\end{cases}}}\)
\(\Rightarrow x\in-1,0,1,2,3,4,5,6,7,8\)
th2: Nếu \(\hept{\begin{cases}x+1< 0\\8-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< =-1\\x>=-8\end{cases}}}\)
\(\Rightarrow x\in\)rỗng
Vì n là số tự nhiên => n = 0 hoặc n thuộc N*
Nếu n = 0
50+30=1+30 = 31
Mà 31 là số nguyên tố ( thỏa mãn )
+ Nếu n thuộc N* => 5n chia hết cho 5 mà 30 chia hết cho 5
=> 5n + 30 chia hết cho 5
MÀ 5n + 30 > 55
=> 5n+30 là hợp số ( mâu thuẫn với đề bài )
Vậy n = 0 thì 5n + 30 là số nguyên tố
1) Ta có :
+ a=1.2.3.4....101 chia hết cho 2 ; 2 cũng chia hết cho 2. Vậy 1.2.3.4...101+2 chia hết cho 2. Vì nó lớn hơn 2 nên nó là hợp số.
+a=1.2.3.4.....101 chia hết cho 3 ; 3 cũng chia hết cho 3. Vậy 1.2.3.4....101+3 chia hết cho 3. Vì nó lớn hơn 3 nên nó là hợp số.
........ ( cứ như thế )
+a=1.2.3.4....101 chia hết cho 101 ; 101 cũng chia hết cho 101. Vậy 1.2.3.4.....101+101 chia hết cho 101. Vì nó lớn hơn 101 nên nó là hợp số.
=> a=1.2.3.4......101 là hợp số.
k nha !!!!!
Tìm số tự nhiên \(x\) sao cho biểu thức P=(\(x\)-1)(\(x^2\)-\(x\)+1) có giá trị là một số nguyên tố.
`P= (x-1)(x^2-x+1)` là một số nguyên tố
`=>` \(\left[{}\begin{matrix}x-1=1\\x^2-x+1=1\end{matrix}\right.\)
`<=>` \(\left[{}\begin{matrix}x=2\\x=0\\x=1\end{matrix}\right.\)
Ta phải tìm số tự nhiên n để P = (n - 1)(n2- n + 1) là số nguyên tố .
P = (n - 1)(n2- n + 1) là một tích , P là số nguyên tố thì P chỉ có 2 ước số là 1 và chính nó. Như vậy P = (n - 1)(n2- n + 1) là số nguyên tố thì:
\(\orbr{\begin{cases}\hept{\begin{cases}n-1=1\\p=n^2-n+1\end{cases}}\\\hept{\begin{cases}n^2-n+1=1\\p=n-1\end{cases}}\end{cases}}\)- T rường hợp 1; n - 1 = 1 , tức là n = 2 khi đó p = n2 - n + 1 = 3 thỏa mãn
- Trường hơp 2 : n2 - n + 1 = 1 , ta tìm được n = 0 , n = 1 . Cả hai giá trị này đều cho ta số p = n - 1 không phải là số nguyên tố.
Trả lời n = 2 , p = 3