Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
Ta có: a+a+2=2a+2=2.(a+1)
Vì a là số nguyên tố lớn hơn 3
=>a là số lẻ
=>a+1 là số chẵn
=>a+1 chia hết cho 2
=>2.(a+1) chia hết cho 4
=>a+a+2 chia hết cho 4(1)
Lại có:
Vì a là số nguyên tố lớn hơn 3
=>a có 2 dạng 3k+1 và 3k+2
*Xét a=3k+1=>a+2=3k+1+2=3k+3=3.(k+1) là hợp số
=>Vô lí
*Xét a=3k+2=>a+2=3k+2+2=3k+4=3.(k+1)+1 là số nguyên tố
Khi đó: a+a+2=2a+2=2.(3k+2)+2=2.3k+4+2=3.2k+6=3.(2k+3) chia hết cho 3
=>a+a+2 chia hết cho 3(2)
Từ (1) và (2) ta thấy:
a+a+2 chia hết cho 4 và 3
mà (4,3)=1
=>a+a+2 chia hết cho 4.3
=>a+a+2 chia hết cho 12
Vậy tổng của n và n+2 chia hết cho 12
m;n thuộc N* nên 2^n-1 < 2^n+1 2 đơn vị => thử 3;5 5;7 11;13
được thì chọn (y)
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
\(\hept{\begin{cases}a=2^n-1\\b=2^n\\c=2^n+1\end{cases}}\)=> a,b,c: Là ba số tự nhiên liên tiếp
Vậy: với n=0=> a=0; loại
n=1=> a=1 loại
n=2=>a=3;b=4;c=5 nhận.
với n>2 : Trong 3 số tn liên tiếp có : 1 số chia hết cho 3 ; vậy 2^n phải chia hết cho 3 điều này không xẩy ra
Vậy: n=2 là duy nhất
sai đề nếu n= 0 thì 2^0= 1. 1-1=0 ko là snt