K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2014

Bài 1 :

Gọi số đó là a (a \(\in\) N)

Ta có :

a = 3k + 1\(\Rightarrow\)a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3\(\Rightarrow\)a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5\(\Rightarrow\)a + 2 = 7k + 7 chia hết cho 7 

\(\Rightarrow\)a + 2 chia hết cho 3 ; 5 ; 7 \(\Rightarrow\)a + 2 \(\in\) BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

\(\Rightarrow\)a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

\(\Rightarrow\)a + 2 = 105 \(\Rightarrow\)a = 105 - 2 = 103

 

 

9 tháng 1 2017

Bài 1 :

Gọi số đó là a (a ∈ N)

Ta có :

a = 3k + 1⇒a + 2 = 3k + 3 chia hết cho 3

a = 5k + 3⇒a + 2 = 5k + 5 chia hết cho 5

a = 7k + 5⇒a + 2 = 7k + 7 chia hết cho 7 

⇒a + 2 chia hết cho 3 ; 5 ; 7 ⇒a + 2 ∈ BC(3 ; 5 ; 7)

Mà a nhỏ nhất nên a + 2 nhỏ nhất 

⇒a + 2 = BCNN(3 ; 5 ; 7) = 3 . 5 . 7 = 105 (vì 3 ; 5 ; 7 là 3 số nguyên tố đôi một cùng nhau)

⇒a + 2 = 105 

10 tháng 2 2019

khiếp cho cả tràng dài thế đứa nào nó lm đc

có nó rảnh quá nó ms lm hết cho m T ạ

10 tháng 2 2019

kệ, xem có ai lm đc ko

Bài 1:

                                      Giải :

Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\)   \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)

\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)

\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)

\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)

\(\Rightarrow E⋮6\)

Do \(E⋮6\)nên \(E\div6\)dư 0

Vậy \(E\div6\)có số dư bằng \(0\)

Bài 2:

                                             Giải :

Ta có:   \(n.\left(n+2\right).\left(n+7\right)\)

     \(=\left(n^2+2n\right).\left(n+7\right)\)

     \(=n^3+2n^2+7n^2+14n\)

     \(=n^3+9n^2+14n\)

     \(=n.\left(n^2+9n+14\right)\)

10 tháng 10 2021

cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13

22 tháng 10 2016

Đặt \(A=1+3+...+2n-1\)

Tổng A có số số hạng là:

\(\frac{\left[\left(2n-1\right)-1\right]}{2}+1=\frac{2n-1-1}{2}+\frac{2}{2}=\frac{2n-2+2}{2}=\frac{2n}{n}=n\)(số)

Tổng A theo n là:

\(\frac{\left(2n+1+1\right)\cdot n}{2}=\frac{\left(2n+2\right)\cdot n}{2}=\frac{2n\left(n+1\right)}{2}=n\left(n+1\right)\)

Thay A vào ta có:

\(n\left(n+1\right)=1225\)

.... ?Đề sai?.....

18 tháng 12 2016

Có số số hạng là :

( 2n -1 - 1): 2 + 1 = ( 2n- n ) : 2 + 1 = 2.( n-1 ) :2 + 1 = n-1+1= n ( số hạng )

Tổng trên là :

( 2n -1 + 1 ) .n : 2 = ( 2n . n ) : 2 = n2

\(\Rightarrow\) n2 = 1225

n2 = 352

\(\Rightarrow\) n = 35

21 tháng 11 2014

3a)

1+2+3+4+5+...+n=231

=> (1+n).n:2=231

(1+n).n=231.2

(1+n).n=462

(1+n).n=2.3.7.11

(1+n).n=(2.11).(3.7)

(1+n).n=22.21

=>n=21

2 tháng 11 2016

gọi d là ước chung của n+3 và 2n+1 . Ta có (2n+6)chia hết cho d và 2n+5 chia hết cho d suy ra (2n+6)-(2n+5)chia hết cho d suy ra 1chia hết cho d vậy d=1   nhớ kết bạn với mình nhé

21 tháng 10 2016

nhan xet

n=1=>1=1=1^2

n=2=>1+3=4=2^2

n=3=>1+3+5=9=3^2

n=4=>1+3+7=16=4^2

n=2n-1=>1+3+7+....+(2n-1)=169=13^2

n=13

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

1.

Đặt $A=2+2^2+2^3+...+2^{100}$

$2A=2^2+2^3+2^4+...+2^{101}$

$\Rightarrow 2A-A=2^{101}-2$

$\Rightarrow A=2^{101}-2$

Có: 

$A+n=510$

$2^{101}-2+n=510$

$n=510+2-2^{101}=512-2^{101}$

AH
Akai Haruma
Giáo viên
6 tháng 7 2024

2.

$A=7+(7^2+7^3)+(7^4+7^5)+....+(7^{20}+7^{21})$

$=7+7^2(1+7)+7^4(1+7)+...+7^{20}(1+7)$

$=7+(1+7)(7^2+7^4+....+7^{20})$

$=7+8(7^2+7^4+...+7^{20)$

$\Rightarrow A$ chia 8 dư 7.