K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

Chứng minh quy nạp \(A=10^n+18n-1\) chia hết cho 27 (1)

+n = 1; A = 27⋮27

+Giả sử (1) đúng với n = k (k ≥ 1); tức là 10k + 18k - 1⋮27

+Ta chứng minh (1) đúng với n = k+1, tức là chứng minh 10k+1 + 18(k+1) - 1⋮27.

Thật vậy, ta có: 10k+1 + 18(k+1) - 1 = 10.10k + 18k + 17 = 27.10k - 17(10+ 18k - 1) +324k = 27(10k + 12) - 17.(10k + 18k - 1)

Mà 10k + 18k - 1⋮27 (giả thiết quy nạp) và 27(10k + 12)⋮27

Nên 10k+1 + 18(k+1) - 1⋮27.

Theo nguyên lí quy nạp, ta có điều phải chứng minh.

 

13 tháng 2 2016

còn cách khác dễ hơn nhiều

30 tháng 7 2015

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)

Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.

\(\frac{a}{b}<1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b.\left(k+1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a

20 tháng 6 2016

làm tắt quá chả hiểu j cả
 

29 tháng 11 2019

Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath

24 tháng 12 2015

Ko sai đề đâu . Kết quả là số 9 . Ta thử lại nha ; 9x10x11x12=11880

UCLN(a, b) = 15 => a= 15m, b = 15n (m, n khác 0 ) [1]
BCNN(a,b)= 300. Mà a.b= BCNN(a,b). UCLN(a,b) nên ta có
a.b= 300.15=4500 [2]
Từ 1 và 2 ta có 15m.15n= 4500
225.mn= 4500
=> mn=20=4.5=1.20
với m=4 , n=5 thì a=60, b= 75
với m=1 , n=20 thì a=15 , b=300

Vì BCNN (a,b) = 300 và ƯCLN (a,b)=15
Suy ra: a.b = 300.15 = 4500
Vì ƯCLN (a,b) =15 nên: a= 15m và b= 15n (với ƯCLN (m,n) = 1).
Vì a+15 =b,=>15m+15 =15n, =>15(m+1) =15n, => m+1= n.
Mà a.b =4500 nên ta có: 15m.15n =4500
                                     15.15.m.n =4500
                                     15^2.m.n  =4500
                                     225.m.n  =4500
                                   =>    m.n  = 20
Suy ra: m=1 và n=20  hoặc  m=4 và n=5.
Mà m+1 =n =>m=4 và n =5.
Vậy: a= 15.4= 60 ; b= 15.5= 75.

12 tháng 11 2021

(n+12)\(⋮\)(n+1)

(n+1+11)\(⋮\)(n+1)

1+11\(⋮\)(n+1)

=>n=0,n=10

16 tháng 7 2015

Phân tích A thành nhân tử được

\(A=n\left(n+1\right)\left(n+2\right)\)

Từ đây việc chứng minh còn lại là khá dễ.

18 tháng 9 2019

và dược 1 dis

24 tháng 11 2017

Ta có:

\(1+2+3+....+n=\overline{aaa}\)

\(\Rightarrow\left(n+1\right).n\div2=\overline{aaa}\)

\(\Rightarrow\left(n+1\right).n\div2=111.a\)

\(\Rightarrow\left(n+1\right).n=111.a.2\)

\(\Rightarrow\left(n+1\right).n=37.6a\)

Vì 37 là số nguyên tố \(\Rightarrow n+1⋮37\) hoặc  \(n⋮37\)

Mà \(\overline{aaa}\le999\Rightarrow n< 50\)

\(\Rightarrow n+1=37\)hoặc \(n=37\)

Nếu \(n=37\Rightarrow6a=38\) (loại)

Nếu \(n+1=37\Rightarrow n=36\Rightarrow a=36\)

Thử lại: \(\left(36.37\right)\div2=666\) (thỏa mãn)

Vậy \(n=36;a=6\)

24 tháng 11 2017

Câu hỏi của Mai Ngọc Khánh Huyền - Toán lớp 6 - Học toán với OnlineMath bạn tham khảo

Bài 2: 

Số số hạng là:

(2n-1-1):2+1=n(số)

Tổng là:

\(\dfrac{\left(2n-1+1\right)\cdot n}{2}=\dfrac{2n^2}{2}=n^2\) là số chính phương(đpcm)