K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2015

abcd chia hết cho ab.cd 
100.ab+cd chia hết cho ab.cd 
 cd chia hết cho ab 
 Đặt cd=ab.k với k thuộc N và 1k9  
Thay vào  ta có
100.ab+k.ab chia hết cho k.ab.ab 
 100+k chia hết cho k.ab 
 100 chia hết cho k  
Từ  và   k thuộc {1;2;4;5} 
Xét k=1 thì thay vào  thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào  102 chia hết cho 2.ab  51 chia hết cho ab và lúc đó thì 
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab  26 chia hết cho ab nên 
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào  ta có 105 chia hết cho 5.ab  21 chia hết cho ab  ab=21 và cd=105 vô lí 
Vậy ta được 2 cặp số đó là 1734;1352

31 tháng 12 2015

Ta có 
abcd chia hết cho ab.cd 
100.ab+cd chia hết cho ab.cd 
 cd chia hết cho ab 
 Đặt cd=ab.k với k thuộc N và 1k9  
Thay vào  ta có
100.ab+k.ab chia hết cho k.ab.ab 
 100+k chia hết cho k.ab 
 100 chia hết cho k  
Từ  và   k thuộc {1;2;4;5} 
Xét k=1 thì thay vào  thì 101 chia hết cho ab (loại)
Với k=2 thì thay vào  102 chia hết cho 2.ab  51 chia hết cho ab và lúc đó thì 
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
Với k=4 thì ta có 104 chia hết cho 4.ab  26 chia hết cho ab nên 
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
Với k=5 thì thay vào  ta có 105 chia hết cho 5.ab  21 chia hết cho ab ab=21 và cd=105 vô lí 
Vậy ta được 2 cặp số đó là 1734;1352

27 tháng 3 2016

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

6 tháng 12 2017

Bạn xem ở đây nhé;

Câu hỏi của Ho Thi Ly - Toán lớp 6 - Học toán với OnlineMath

28 tháng 1 2018

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

29 tháng 3 2016

abcd có gạch trên đầu ko?

29 tháng 3 2016

Câu trả lời đúng nhất ngắn gọn nhất

Xét abcd chia hết cho ab. cd. Đặt ab= m, cd=n thì 10m+n chia hết cho mm (1) . Đó n chia hết cho m . Đặt n=km(2) với k thuộc N , k<10, thay vào (1) ta được 100m+km chia hết cho mkm . Suy ra 100+k chia hết cho km . Suy ra 100 chia hết cho k suy ra k thuộc { 1,2,3,4,5}(vì k<10).

Thay vào 1,2,3,4,5 vào (1) và (2) ta được hai giá trị thỏa mãn đề bài là 1734 chia hết cho 17.34 và 1352 chia hết cho 13.52

4 tháng 7 2015

Số abcd chia hết cho tích ab . cd => số abcd chia hết cho ab và cd

abcd = ab . 100 + cd

abcd chia hết cho ab => cd chia hết cho ab => cd = m.ab (m là chữ số do ab; cd là số có 2 chữ số)

abcd chia hết cho cd => ab. 100 chia hết cho cd  => 100.ab = n.cd

=> 100.ab = m.n.ab => m.n = 100  => m = 1; 2; 4; 5; 

+)  m = 1 => ab = cd : Số abcd = abab chia hết cho ab.ab => 101.ab chia hết cho tích ab.ab => 101 chia hết cho ab 

=> không có số nào thỏa mãn

+) m = 2 => cd = 2.ab : số abcd = 100ab + 2ab = 102.ab chia hết cho 2.ab. ab  =>   51 chia hết cho ab 

=> ab = 17 => cd = 34 => có số 1734

+) m = 4 => cd = 4.ab : số abcd = 104. ab chia hết cho 4.ab.ab => 26 chia hết cho ab  =  > ab = 13 => cd = 52

có Số 1352

+) m = 5 => cd = 5ab : số abcd = 105 .ab chia hết cho 5.ab.ab => 21 chia hết cho ab => ab =  21 => cd = 105 Loại

Vậy có 2 số thỏa mãn: 1734 và 1352

4 tháng 7 2015

Tìm số abcd (gạch đầu), biết rằng số đó chia hết cho tích các số ab và cd (gạch đầu hết) 
Ta có 
abcd chia hết cho ab.cd 
100.ab+cd chia hết cho ab.cd 
 cd chia hết cho ab 
Đặt cd=ab.k với k \(\in\) N và 1\(\le\)k\(\le\)9  
Thay vào  ta có
100.ab+k.ab chia hết cho k.ab.ab 
 =>100+k chia hết cho k.ab 
 => 100 chia hết cho k  
=> k \(\in\) {1;2;4;5} 
- Xét k=1 thì thay vào thì 101 chia hết cho ab (loại)
- Với k=2 thì thay vào 102 chia hết cho 2.ab  51 chia hết cho ab và lúc đó thì :
ab=17 và cd=34(nhận) hoặc ab=51;cd=102 (loại)
- Với k=4 thì ta có 104 chia hết cho 4.ab => 26 chia hết cho ab nên 
ab=13;cd=52(nhận) hoặc ab=26;cd=104(loại)
- Với k=5 thì thay vào  ta có 105 chia hết cho 5.ab => 21 chia hết cho ab => ab=21 và cd=105 vô lí 
                Vậy ta được 2 cặp số đó là 1734;1352