Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Leftrightarrow\frac{\sqrt{x}-3+4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\frac{\sqrt{x}-3}{\sqrt{x}-3}+\frac{4}{\sqrt{x}-3}\in Z\Leftrightarrow1+\frac{4}{\sqrt{x}-3}\in Z\)
\(\Leftrightarrow\frac{4}{\sqrt{x}-3}\in Z\Rightarrow\sqrt{x}-3\inƯ\left(4\right)\in\left\{-1;1;-2;2;-4;4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;1;5;-1;7\right\}\Rightarrow x\left\{4;16;1;25;1;49\right\}\)
Vậy \(x=\left\{1;4;16;25;49\right\}\)thì \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z.\)
\(P=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=\frac{x^2-2}{x^2-2}-\frac{3}{x^2-2}\)
\(=1-\frac{3}{x^2-2}\). Để P thuộc Z thì \(\frac{3}{x^2-2}\in Z\)
Hay \(x^2-2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow x\in\left\{\pm1\right\}\left(x\in Z\right)\)
bài 1:
Mẫu số của phân số đó là : 30 : (23 - 17) x 23 =115
Tử số của phân số đó là : 115 - 30 = 85
=> Phân số cần tìm là : \(\frac{85}{115}\)
Bài 2:
a) với mọi n
b) \(A=\frac{8n+21}{2n+6}=\frac{8n+24-3}{2n+6}=\frac{4.\left(2n+6\right)-3}{2n+6}=\frac{4\left(2n+6\right)}{2n+6}-\frac{3}{2n+6}\) = \(4-\frac{3}{2n+6}\)
Để A thuộc Z thì \(\frac{3}{2n+6}\in Z\Rightarrow3⋮2n+6\) \(\Rightarrow2n+6\) \(\inƯ\left(3\right)\) \(=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow n\in\left\{-\frac{9}{2};-\frac{7}{2};-\frac{5}{2};-\frac{3}{2}\right\}\)
mà n \(\in Z\Rightarrow n\in\) rỗng.
Ta có : \(\frac{x+1}{5}=\frac{2x-7}{3}\)
\(\Rightarrow3\left(x+1\right)=5\left(2x-7\right)\)
\(\Leftrightarrow3x+3=10x-35\)
\(\Leftrightarrow3x-10x=-35-3\)
\(\Leftrightarrow-7x=-38\)
\(\Rightarrow x=\frac{38}{7}\)
Ta có : \(\frac{x}{4}=\frac{9}{x}\)
\(\Rightarrow x^2=9.4\)
=> x2 = 36
=> x = +4;-4
a) để M nguyên thì \(\frac{x+2}{3}\in Z\)
\(\Rightarrow x+2⋮3\)
\(\Rightarrow\)x + 2 \(\in\)B ( 3 ) = { ... ; -9 ; -6 ; -3 ; 0 ; 3 ; 6 ; 9 ; ... }
\(\Rightarrow\)x = { ... ; -11 ; -8 ; -5 ; -2 ; 1 ; 4 ; 7 ; ... }
b) để N nguyên thì \(\frac{7}{x-1}\)nguyên
\(\Rightarrow7⋮x-1\)
\(\Rightarrow x-1\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\)
Lập bảng ta có :