K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

21 tháng 5 2016

a. Đê A nguyên thi 5x+1 chia hêt cho x-2            Suy ra 5x-10+11 chia hêt cho x-2                    Suy ra 5.(x-2)+11 chia het cho x-2                     Vi 5.(x-2) chia het cho x-2 nen 11 chia het cho x-2                                                            Suy ra x-2 thuôc {1;-1;11;-11}                      Suy ra x thuôc {3;1;13;-9}                             Vay x thuoc {3;1;13;-9}                                 b. A=1/10+1/15+1/21+...+1/171+1/190   1/2A=1/20+1/30+1/42+...+1/342+1/380 1/2A=1/4.5+1/5.6+1/6.7+...+1/18.19+1/19.20                                                                   1/2A=1/4-1/5+1/5-1/6+1/6-1/7+...+1/18-1/19+1/19-1/20=1/4-1/20=1/5           A=1/5:1/2=1/5.2=2/5

3 tháng 7 2019

Để biểu thức nguyên 

\(\Leftrightarrow x-1⋮x+2\)

\(\Leftrightarrow x+2-3⋮x+2\)

MÀ \(x+2⋮x+2\)

\(\Rightarrow3⋮x+2\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Tìm nốt 

3 tháng 7 2019

Để \(\frac{x-1}{x+2}\inℤ\)

=> \(x-1⋮x+2\)

=> \(x+2-3⋮x+2\)

Ta có : Vì \(x+2⋮x+2\)

        => \(-3⋮x+2\)

        => \(x+2\inƯ\left(-3\right)\)

       => \(x+2\in\left\{\pm1;\pm3\right\}\)

Lập bảng xét các trường hợp :

x + 21- 13- 3
x- 1- 31- 5

Vậy \(\frac{x-1}{x+2}\inℤ\Leftrightarrow x\in\left\{-1;-3;1;-5\right\}\)

30 tháng 7 2016

có B= \(\frac{a+3}{a-2}=\frac{\left(a-2\right)+5}{a-2}=1+\frac{5}{a-2}\)

để B có giá trị nguyên thì \(\frac{5}{a-2}\)phải có giá trị nguyên 

=> 5 chia hết cho a-2 

=> a-2 thuộc Ư(5)={ 1, -1, 5, -5 }

 +) a -2 = 1 => a= 3

  +) a -2 = -1 => a= 1

 +) a-2 = 5 => a = 7

  +) a-2 = -5 => a= -3

 Vậy ......

6 tháng 1 2021

ok how are you