Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow x^2-x+1\inƯ\left(7\right)=\left\{1,-1,7,-7\right\}\)
đến đây thay vào giải phương trình là xong
10x^2 - 7x - 5 2x - 3 5x + 4 10x^2 - 15x - 8x - 5 8x - 12 7 -
Ta có \(M=\frac{10x^2-7x-5}{2x-3}=5x+4+\frac{7}{2x-3}\)
Để \(M=5x+4+\frac{7}{2x-3}\) là số nguyên <=> \(\frac{7}{2x-3}\)là số nguyên
\(\Rightarrow7⋮2x-3\) hay \(2x-3\inƯ\left(7\right)\)
\(\RightarrowƯ\left(7\right)=\) { - 7; - 1; 1; 7 }
Ta có : 2x - 3 = 7 <=> 2x = 10 => x = 5 (t/m)
2x - 3 = 1 <=> 2x = 4 => x = 2 (t/m)
2x - 3 = - 1 <=> 2x = 2 => x = 1 (t/m)
2x - 3 = - 7 <=> 2x = - 4 => x = - 2 (t/m)
Vậy với x \(\in\) { - 2; 1; 2; 5 } thì M là số nguyên
a) \(A=\frac{\left(2x\right)^2-\left(2x\right)+7}{\left(2x\right)-1}=\frac{\left(2x\right)\left(2x-1\right)+7}{\left(2x-1\right)}=2x+\frac{7}{\left(2x-1\right)}\)dk x khac 1/2
b) 2x-1=U(7)=> x={-3,0,1,4)
\(A=\frac{\left(x^4+4x^2+4\right)+\left(3x^3+6x\right)-\left(2x^2+4\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)^2+3x\left(x^2+2\right)-2\left(x^2+2\right)-2}{x^2+2}\)
\(A=\frac{\left(x^2+2\right)\left(x^2+3x\right)}{x^2+2}-\frac{2}{x^2+2}=x^2+3x-\frac{2}{x^2+2}\)
Để A là số nguyên, mà x là số nguyên nên \(x^2+3x\)nguyên, do đó \(\frac{2}{x^2+2}\inℤ\)
Do \(x^2+2\ge2\) nên \(x^2+2=2\Leftrightarrow x=0\)
gọi cái trên là T6 nhá
t nguyên <=> x^2-x+1 \(\in\)Ư(7)
=>\(\hept{\begin{cases}x^2-x+1=1\\x^2-x+1=7\end{cases}}< =>\hept{\begin{cases}x=0\\x=-2\end{cases}}\)thêm nữa \(\hept{\begin{cases}x^2-x+1=-1\\x^2-x+1=-7\end{cases}\Leftrightarrow\hept{\begin{cases}x=vn\\x=vn\end{cases}}}\)(vn là vô nghịm)
I love you