Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) Do (3-2x)2 \(\ge0\) và (y-5)20 \(\ge0\)
mà (3-2x)2+(y-5)20\(\le0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(3-2x\right)^2=0\\\left(y-5\right)^{20}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3-2x=0\\y-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=3-0=3\\y=0+5=5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=5\end{matrix}\right.\)
Vậy: \(x=\frac{3}{2};y=5\)
c) x là các số nguyên hả bạn?
Do (x-3).(x-4)\(\le0\)
\(\Rightarrow\) Có hai trường hợp:
TH1: (x-3)(x-4)=0
Trong hai số (x-3) và (x-4) có một số bằng 0.
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0+3=3\\x=0+4=4\end{matrix}\right.\)
TH2: (x-3)(x-4)<0
Trong hai số x-3 và x-4 có một số là số nguyên dương, 1 số là số nguyên âm.
mà x-4<x-3 \(\Rightarrow\) x-4 là số nguyên âm ( x-4<0) \(\Leftrightarrow\) x<4 (1)
x-3 là số nguyên dương (x-3>0) \(\Rightarrow x>3\) (2)
Từ (1) và (2) \(\Rightarrow\) 3<x<4 mà x là các số nguyên nên x ko tm
Vậy: x\(\in\left\{3;4\right\}\)
Bài 2:
c) (x-12).(y+5)=7=1.7=7.1=-1.-7=-7.-1
\(\Rightarrow\) \(\left[{}\begin{matrix}x-12=1;y+5=7\\x-12=7;y+5=1\\x-12=-1;y+5=-7\\x-12=-7;y+5=-1\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=13;y=2\\x=19;y=-4\\x=11;y=-12\\x=5;y=-6\end{matrix}\right.\)
Vậy:...
a, \(\frac{\left(2^3.5.7\right)\left(5^2.7^3\right)}{\left(2.5.7^2\right)^2}\)\(=\frac{2^3.5.7.5^2.7^3}{2^2.5^2.7^4}=\frac{2^3.5^3.7^4}{2^2.5^2.7^4}=10\)
b, \(\frac{4}{77}+\frac{4}{165}+\frac{4}{285}\)
\(=\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}\)
\(=\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}\)
\(=\frac{1}{7}-\frac{1}{19}\)
\(=\frac{19}{133}-\frac{7}{133}=\frac{12}{133}\)
Bài 2:
\(a,\left(x+\frac{2}{3}\right).\frac{-3}{5}+\frac{4}{7}=1\frac{4}{7}.x\)
\(\Rightarrow\frac{-3}{5}x+\frac{-2}{5}+\frac{4}{7}=\frac{11}{7}.y\)
\(\Rightarrow\frac{-3}{5}x+\frac{6}{35}=\frac{11}{7}.y\)
Từ đây làm nốt
b, \(\left|5x-2\right|\le0\)
\(\Rightarrow\left|5x\right|\le2\)( x \(\ge0\))
Mà không có số x nào nhân với 5 bé hơn hoặc bằng 2
\(\Rightarrow\)x không có giá trị thỏa mãn
c đề bài sai, chỉ tìm x chứ làm gì có y
d, \(\left(x-3\right).\left(2y+1\right)=7\)
TH1:
x - 3 = 1
x = 1 + 3
x = 4
2y + 1 = 7
2y = 7 - 1 = 6
y = 6 : 2 = 3
TH2:
x - 3 = 7
x = 7 + 3 = 10
2y + 1 = 1
2y = 1 - 1 = 0
y = 0 : 2 = 0
TH3:
x - 3 = -1
x = -1 + 3
x = 2
2y+ 1 = -7
2y = -7 - 1 = -8
y = (-8) : 2 = -4
TH4:
x - 3 = -7
x = -7 + 3
x = -4
2y + 1 = -1
2y = (-1) - 1
2y = -2
y = (-2) : 2 = -1
Vậy ......
a) Để \(\left(x+1\right)\left(x+5\right)>0\) thì x + 1 và x + 5 đồng dấu.
Ta có 2 trường hợp:
TH1:\(\hept{\begin{cases}x+1>0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x>-5\end{cases}}\Leftrightarrow x>-1\)
TH2: \(\hept{\begin{cases}x+1< 0\\x+5< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< -1\\x< -5\end{cases}}\Leftrightarrow x< -5\)
Vậy x > -1 hoặc x < -5
b) \(x\left(x-3\right)\le0\)
+)Xét x(x - 3) = 0.
Ta có: \(x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\) (1)
+)Xét \(x\left(x-3\right)< 0\) thì x và x - 3 trái dấu.Xét 2 TH:
TH1: \(\hept{\begin{cases}x>0\\x-3< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< 3\end{cases}}\Leftrightarrow0< x< 3\) (2)
TH2: \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)
Kết hợp (1) và (2) ta được: \(0\le x\le3\)