Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\frac{7}{6}< |x-\frac{2}{3}|< \frac{26}{9}\)
\(\Rightarrow\frac{21}{18}< |x-\frac{2}{3}|< \frac{52}{18}\)
Rùi tự thay vào
\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)
\(\Leftrightarrow\frac{7}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{9}\)
\(\Leftrightarrow\frac{7}{6}< 2\le\left|x-\frac{2}{3}\right|\le2< \frac{26}{9}\)
\(\Leftrightarrow\left|x-\frac{2}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=--\frac{4}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{8}{3};-\frac{4}{3}\right\}\)
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
a: \(=7\cdot\dfrac{6}{7}-5+\dfrac{3\sqrt{2}}{2}=1+\dfrac{3}{2}\sqrt{2}\)
b: \(=-\dfrac{8}{7}-\dfrac{3}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}=\dfrac{-16+7}{14}-\dfrac{3}{8}=\dfrac{-9}{14}-\dfrac{3}{8}\)
\(=\dfrac{-72-42}{112}=\dfrac{-114}{112}=-\dfrac{57}{56}\)
c: \(=20\sqrt{5}-\dfrac{1}{4}\cdot\dfrac{4}{3}+\dfrac{3}{2}=20\sqrt{5}+\dfrac{3}{2}-\dfrac{1}{3}=20\sqrt{5}+\dfrac{7}{6}\)
\(\left\{\dfrac{-5< 0< -0,4}{x\in Z}\right\}\Rightarrow x\in\left\{-4;-3;-2;-1\right\}\)
Do \(\left|x-\dfrac{2}{3}\right|\ge0;\forall x\)
Mà \(-\dfrac{26}{\sqrt{81}}< 0\)
\(\Rightarrow\) Không tồn tại x để \(\left|x-\dfrac{2}{3}\right|< -\dfrac{26}{\sqrt{81}}\)
Hay ko tồn tại số nguyên x thỏa mãn đề bài