K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên) 
+) nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1) 
+) nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (2) 
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3) 
từ (1), (2), (3) suy ra p=3 là giá trị cần tìm.

26 tháng 11 2016

a)

+) Nếu p = 2 thì p + 10 = 2 + 10 = 12 → Hợp số ( loại)

+) Nếu p = 3 thì p + 10 = 3 + 10 = 13 ; p + 14 = 17 → Số nguyên tố ( thỏa mãn )

+) Nếu p > 3 thì p có dạng : 3k + 1 hoặc 3k + 2

- Với p = 3k + 1 thì p + 14 = 3k + 1+ 14 = 3k + 15 chia hết cho 3 → Hợp số ( loại )

- Với p = 3k + 2 thì p + 10 = 3k + 2 +10 = 3k + 12 chia hết cho 3 → Hợp số (loại)

Vậy p = 3

 

1 tháng 1 2017

a)

- Nếu p = 2 => p + 10 = 2 + 10 = 12 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 10 = 3 + 10 = 13 là số nguyên tố

p + 14 = 3 + 14 = 17 là số nguyên tố

- Nếu p > 3 ; p là số nguyên tố thì p có dạng 3k + 1 và 3k + 2

+ p = 3k + 1 => p + 14 = 3k + 1 + 14 = 3k + 15 \(⋮\)3 là hợp số

=> p = 3k + 1 (loại)

+ p = 3k + 2 => p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3 là hợp số

=> p = 3k + 2 (loại)

Vập p = 3

b)

- Nếu p = 2 => p + 2 = 2 + 2 = 4 là hợp số

=> p = 2 (loại)

- Nếu p = 3 => p + 6 = 3 + 6 = 9 là hợp số

=> p = 3 (loại)

- Nếu p = 5 => p + 2 = 5 + 2 = 7 là số nguyên tố

p + 6 = 5 + 6 =11 là số nguyên tố

p + 8 = 5 + 8 = 13 là số nguyên tố

=> p = 5 (chọn)

- Nếu p > 5; p là số nguyên tố thì p có dạng là 5k - 1

p = 5k - 1 => p + 6 = 5k - 1 + 6 = 5k + 5 \(⋮\)5 là hợp số

=> p = 5k - 1 (loại)

Vập p = 5

Mình không biết phần b mình làm đúng không nữa!

Chúc bạn học tốt!

18 tháng 8 2021

Khi p = 2 => p + 10 = 12 (loại)

Khi p = 3 => p + 10 = 13 (tm) 

p + 14 = 17 (tm)

Khi p > 3 => đặt \(\orbr{\begin{cases}p=3k+1\\p=3q+2\end{cases}}\left(k;q\inℕ^∗\right)\)

Khi p  = 3k + 1 => p + 14 = 3k + 15 = 3(k + 5) \(⋮\)3 (loại)

Khi p = 3q + 2 => p + 10 = 3q + 12 = 3(q + 4) \(⋮\)3 (loại)

Vậy p = 3 là giá trị cần tìm

18 tháng 8 2021

Tm là j đấy

11 tháng 4 2019

p là số nguyên tố nên p có 1 trong 3 dạng 3k, 3k + 1, 3k + 2.

a) +) p = 3k nên p = 3

    +) p = 3k + 1 nên p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) \(⋮\) 3 (là hợp số)

    +) p =3k + 2 nên p + 4 = 3k + 2 + 4 =3k + 6 = 3(k + 2) \(⋮\) 3 (là hợp số)

Vậy p = 3 để p + 2 và p + 4 là số nguyên tố.

b) +) p = 3k nên p = 3

    +) p = 3k + 1 nên p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) \(⋮\) 3 (là hợp số)

    +) p =3k + 2 nên p + 10 = 3k + 2 + 10 =3k + 12 = 3(k + 4) \(⋮\) 3 (là hợp số)

Vậy p = 3 để p + 10 và p + 14 là số nguyên tố.

11 tháng 4 2019

p là số nguyên tố nên p có 1 trong 3 dạng 3k, 3k + 1, 3k + 2.

a) +) \(p=3k\Rightarrow p=3\)

    +) \(\text{p = 3k + 1 nên p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) ⋮ 3}\) (là hợp số)

    +)\(\text{ p =3k + 2 nên p + 4 = 3k + 2 + 4 =3k + 6 = 3(k + 2) ⋮ 3}\) (là hợp số)

Vậy \(\text{p = 3 để p + 2 và p + 4}\) là số nguyên tố.

b) +)\(\text{ p = 3k nên p = 3}\)

    +) \(\text{p = 3k + 1 nên p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) ⋮ 3}\) (là hợp số)

    +) \(\text{p = 3k + 1 nên p + 14 = 3k + 1 + 14 = 3k + 15 = 3(k + 5) ⋮ 3}\) (là hợp số)

Vậy p = 3 để p + 10 và p + 14 là số nguyên tố.

8 tháng 11 2014

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

26 tháng 7 2023

Bài 1 :

a) \(123456789+729=\text{123457518}⋮2\)

⇒ Số trên là hợp số

b)\(5.7.8.9.11-132=\text{27588}⋮2\)

⇒ Số trên là hợp số

Bài 2 :

a) \(P+2\&P+4\) ;à số nguyên tố

\(\Rightarrow\dfrac{P+2}{P+4}=\pm1\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{P+2}{P+4}=1\\\dfrac{P+2}{P+4}=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}P+2=P+4\\P+2=-P-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}0.P=2\left(x\in\varnothing\right)\\2.P=-6\end{matrix}\right.\)

\(\Rightarrow P=-3\)

Câu b tương tự

 

26 tháng 7 2023

a,123456789+729=123457518(hợp số)

b,5x7x8x9x11-132=27588(hợp số)

Bài 2,

a,Nếu P=2=>p+2=4 và p+4=6 (loại)

Nếu P=3=>p+2=5 và p+4=7(t/m)

P>3 => P có dạng 3k+1 hoặc 3k+2(k ϵn,k>0)

Nếu p=3k+1=>p+2=3k+3 ⋮3( loại)

Nếu p=3k+2=>p+4=3k+6⋮3(loại)

Vậy p=3 thỏa mãn đề bài

b,Nếu p=2=>p+10=12 và p+14=16(loại)

Nếu p=3=>p+10=13 và p+14=17(t/m)

Nếu p >3=>p có dạng 3k+1 hoặc 3k+2

Nếu p=3k+1=>p+14=3k+15⋮3(loại)

Nếu p=3k+2=>p+10=3k+12⋮3(loại)

Vậy p=3 thỏa mãn đề bài.