Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lò Kim Duyên => Lò Kim Tôn=> Lồn Kim To
ăn nói cho cẩn thận nha bạn kẻo mồm thối nhá
bạn còn không bằng một con dog
a) 15-n \(⋮\)n-2
\(\Rightarrow\)-(15-n) \(⋮\) n-2
\(\Rightarrow\)n-15 \(⋮\)n-2
\(\Rightarrow\)n-2-13 \(⋮\)n-2
\(\Rightarrow\)13 \(⋮\)n-2
\(\Rightarrow\)n-2 \(\in\)Ư(13)
\(\Rightarrow\)Ư(13) \(\in\){-1;1-13;13}
Lập bảng:
n-2 | -1 | 1 | -13 | 13 |
n | 1 | 3 | -11 | 15 |
Vậy...
b) 3-4n \(⋮\)2n-1
\(\Rightarrow\)4n-3 \(⋮\)2n-1
\(\Rightarrow\)2(2n-1)-1 \(⋮\)2n-1
\(\Rightarrow\)1 \(⋮\)2n-1
\(\Rightarrow\)2n-1 \(\in\)Ư(1)
\(\Rightarrow\)Ư(1) \(\in\){-1;1}
Lập bảng:
2n-1 | -1 | 1 |
n | 0 | 1 |
NX | tm | tm |
Vậy...
c) x-5 \(⋮\)3x-2
\(\Rightarrow\)3(x-5) \(⋮\)3x-2
\(\Rightarrow\)3x-15 \(⋮\)3x-2
\(\Rightarrow\)3x-2-13 \(⋮\)3x-2
\(\Rightarrow\)13 \(⋮\)3x-2
\(\Rightarrow\)3x-2 \(\in\)Ư(13)
\(\Rightarrow\)Ư(13) \(\in\){-1;1;-13;13}
Lập bảng:
3x-2 | -1 | 1 | -13 | 13 |
x | 1/3 | 1 | -11/3 | 5 |
NX | loại | tm | loại | tm |
Vậy...
d) 3x2-13 \(⋮\)x-2
\(\Rightarrow\)3x(x-2)+6x-13 \(⋮\)x-2
\(\Rightarrow\)3x(x-2)+6(x-2)-1 \(⋮\)x-2
\(\Rightarrow\)1 \(⋮\)x-2
\(\Rightarrow\)x-2 \(\in\)Ư(1)
\(\Rightarrow\)Ư(1) \(\in\){-1;1}
Lập bảng:
x-2 | -1 | 1 |
x | 1 | 3 |
Vậy...
Bạn check lại giúp mình nhé, mấy dạng kiểu này(câu a, b mình chưa làm quen) nên ko chắc ạ.
a) ta có 2n+3=2(n+2)-1
=> 1 chia hết cho n+2
n nguyên => n+2 nguyên => n+1 thuộc Ư (1)={-1;1}
Nếu n+1=-1 => n=-2
Nếu n+1=1 => n=0
Vậy n={-2;0}
b) Ta có n2+2n+5=n(n+2)+5
=> 5 chia hết cho n+2
n nguyên => n+2 nguyên => n+2 thuộc Ư (5)={-5;-1;1;5}
Ta có bảng
n+2 | -5 | -1 | 1 | 5 |
n | -7 | -3 | -1 | 3 |
a, \(\dfrac{15}{n-1}\); n∈Z
\(\dfrac{15\left(n-1\right)}{n-1}=\dfrac{15n-15}{n-1}\)
=> Ư(15)={\(\pm1;\pm3;\pm5;\pm15\)}
Vậy n∈{-14;-4;-2;0;2;4;6;16}
b, \(\dfrac{-21}{n+3}\) n∈Z
\(\dfrac{-21\left(n+3\right)}{n+3}=\dfrac{\left(-21n-63\right)}{n+3}\)
Ư(63)={±1;±3;±7;±9;±21;±63}
Vậy n∈{-66;-24;-12;-10;-6;-4;-2;0;4;6;18;60}
\(\dfrac{2n+7}{n-2};n\inℤ\\ \Rightarrow\dfrac{\left(2n-4\right)+7+2}{n-2}=\dfrac{2\left(n-2\right)+9}{n-2}=2+\dfrac{9}{n-2}\)
\(\LeftrightarrowƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng sau:
Vậy n={-7;-1;1;3;5;11}