Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(A=\frac{6n+7}{2n+1}=\frac{3\left(2n+1\right)-3+7}{2n+1}=3+\frac{4}{2n+1}\)
Để A nguyên thì 4 phải chia hết cho 2n+1
=> 2n+1 \(\varepsilon\)Ư(4) = {-4;-2;-1;1;2;4}
Mà 2n + 1 là số lẻ
=> 2n + 1 \(\varepsilon\){-1;1}
=> 2n \(\varepsilon\){-2;0}
=> n \(\varepsilon\){-1;0}
Vậy:...
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự
Ta có:\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=\frac{3\left(2n-3\right)}{2n-3}+\frac{5}{2n-3}=3+\frac{5}{2n-3}\)
Để A có giá trị lớn nhất thì \(\frac{5}{2n-3}\) có giá trị lớn nhất.
\(\Rightarrow2n-3\) có giá trị nhỏ nhất.
Với \(n\le1\Rightarrow2n\le2\Rightarrow2n-3\le-1\Rightarrow\frac{5}{2n-3}< 0\left(L\right)\)
Với \(n>1\Rightarrow2n-3\ge1\Rightarrow\frac{5}{2n-3}\le5\)
Dấu "=" xảy ra khi và chỉ khi n=2.
Vậy \(A_{max}=8\Leftrightarrow n=2\) .
\(A=\frac{6n-4}{2n-3}=\frac{3\left(2n-3\right)+5}{2n-3}=3+\frac{5}{2n-3}\)
A lớn nhất khi \(\frac{5}{2n-3}\)lớn nhất
Mà \(5>0\) \(\Rightarrow\) \(2n-3\) là số nguyên dương nhỏ nhất
\(\Rightarrow\) \(2n-3=1\) \(\Rightarrow\) \(2n=4\) \(\Rightarrow\) \(n=2\)
\(\Rightarrow\) \(GTLN\) của A là 8 khi n = 2
Study well ! >_<
a, để B là số nguyên thì 6n+7 chia hết cho 2n+3
=> 6n+9-2 chia hết cho 2n+3
Vì 6n+9 chia hết cho 2n+3
=> 2 chia hết cho 2n+3
Mà 2n+3 lẻ
=> 2n+3 thuộc ước lẻ của 2
2n+3 | n |
1 | -1 |
-1 | -2 |
KL: n\(\in\){-1; -2}
Ta có :
\(A=\frac{6n-4}{2n+3}=\frac{6n+9-13}{2n+3}=3-\frac{13}{2n+3}\)
a. Để A nguyên thì \(\frac{13}{2n+3}\in Z\)
\(\Rightarrow2n+3\in\left\{-13;-1;1;13\right\}\)
\(\Rightarrow2n\in\left\{-16;-4;-2;10\right\}\)
\(\Rightarrow n\in\left\{-8;-2;-1;5\right\}\)
b. Bổ sung điều kiện : A thuộc Z
Để \(A_{max}\) thì \(\frac{13}{2n+3}_{min}\)
\(\Leftrightarrow2n+3_{max}\in Z^-\)
Mà \(A\in Z\Leftrightarrow2n+3=-13\) hoặc \(2n+3=-1\)
\(\Rightarrow A_{max}=3-\frac{13}{-1}=16\Leftrightarrow n=-2\left(tm:n\in Z\right)\)
Vậy Amax = 16 <=> n = -2
a) Để A có giá trị nguyên thì \(3n+9⋮n-4\)
\(\Rightarrow3n-9-3.\left(n-4\right)⋮n-4\)
\(\Rightarrow3n-9-3n+12⋮n-4\)
\(\Rightarrow3⋮n-4\Rightarrow n-4\inƯ\left(3\right)\)
\(\Rightarrow n-4\in\left\{-1;-2;-4;1;2;4\right\}\)
\(\Rightarrow n\in\left\{3;2;0;5;6;8\right\}\)
b) Để B có giá trị nguyên thì \(6n+5⋮2n-1\)
\(\Rightarrow6n+5-3.\left(2n-1\right)⋮2n-1\)
\(\Rightarrow6n+5-6n+3⋮2n-1\)
\(\Rightarrow8⋮2n-1\Rightarrow2n-1\inƯ\left(8\right)\)
Mà 2n - 1 là số lẻ \(\Rightarrow2n-1\in\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{0;1\right\}\)
* Để A có giá trị nguyên thì 3n + 9 chia hết cho n - 4
Có 3n + 9 = 3. ( n - 4 ) + 21 chia hết cho n - 4
Mà 3. ( n - 4 ) chia hết cho n - 4
3 . ( n - 4 ) + 21 chia hết cho n - 4 <=> 21 chia hết cho n - 4
=> n - 4 thuộc U ( 21 ) = { 1 ; 3 ; 7 ; 21 }
n - 4 = 1 => n = 5
n - 4 = 3 => n = 7
n - 4 = 7 => n = 11
n - 4 = 21 => n = 25
Vậy n = { 5 ; 7 ; 11 ; 25 }
Để \(\frac{3n+9}{n-4}\)thì tử phải chia hết cho mẫu hay mẫu phải thuộc ước của từ.Ta tìm điều kiện thích hợp :
\(3n+9⋮n-4\Leftrightarrow3n-12+21⋮n-4\)
\(\Rightarrow3\left(n-4\right)+21⋮n-4\)
\(3\left(n-4\right)⋮n-4\Rightarrow21⋮n-4\)
\(\Leftrightarrow n-4\inƯ\left(21\right)=\left\{1,3,7,21,-1,-3,-7,-21\right\}\)
Rồi bạn lập bảng rồi tính giá trị ra
Tương tự câu b
\(6n+5=6n-1+6⋮6n-1\)
\(6n-1⋮6n-1\Rightarrow6⋮6n-1\)
a ) Để 3n + 9 / n -4 là số nguyên thì 3n + 9 chia hết cho n - 4
hay 3n - 4 + 13 chia hết cho n - 4
nên 13 chia hết cho n - 4 ( vì 3n - 4 chia hết cho n - 4 )
do đó n - 4 thuộc Ư( 13) = { -13;-1;1;13}
hay n thuộc { -9;3;5;17}
Vậy n thuộc { -9;3;5;17}
b) Để 6n + 5 / 6n - 1 là số nguyên thì 6n + 5 chia hết cho 6n - 1
hay 6n -1 + 6 chia hết cho 6n - 1
nên 6 chia hết cho 6n - 1 ( 6n - 1 chia hết cho 6n - 1)
do đó 6n - 1 thuộc Ư(6) = { -6;-3;-2;-1;1;2;3;6}
xét các trường hợp được n = 0
Vậy n = 0
Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN
⇒2n-1 là số nguyên dương nhỏ nhất
⇒2n-1=1
⇒2n=2
⇒n=1