Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n+9⋮n+2\)
\(\Rightarrow n+2+7⋮n+2\)
mà \(n+2⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(n\in\left\{-1;-3;5;-9\right\}\)
\(b,2n+7⋮n+1\)
\(\Rightarrow2n+2+5⋮n+1\)
\(\Rightarrow2\left(n+1\right)+5⋮n+1\)
mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
Goi ƯCLN 2n+1 ; 14n+5 là d
\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)
=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d
=> 2 ⋮ d
Mà 2n + 1 lẻ
=> d = 1
Vậy ...........
BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau
:3) 2n + 1 và 14n + 5 với n ∈ N
Gọi d là = (2n+1, 14n+5)
=) 2n+1 chia hết cho d
=)14n+ 5 chia hết cho d
Vì 2n+1 là số lẻ mà d là ước của 2n+1
=) d là số lẻ
Ta có: 7 (2n+1) - (14n+5)
= 14n + 7 - 14n + 5
= 2
Mà 2n+1 lẻ
=) d= 1
Vậy (2n+1, 14n+5) = 1
\(\frac{2n+9}{n-2}=\frac{2n-4+13}{n-2}=\frac{2.\left(n-2\right)+13}{n-2}=2+\frac{13}{n-2}\)\(\left(ĐKXĐ:n\ne2\right)\)
Để \(\frac{2n+9}{n-2}\)nguyên thì \(2+\frac{13}{n-2}\)nguyên
Mà \(2\in Z\)nên để \(2+\frac{13}{n-2}\)nguyên thì \(\frac{13}{n-2}\)nguyên
Để \(\frac{13}{n-2}\)nguyên thì \(13⋮n-2\)
\(\Leftrightarrow n-2\inƯ\left(13\right)\)
\(\Leftrightarrow n-2\in\left\{-13;-1;1;13\right\}\)
\(\Leftrightarrow n\in\left\{-11;1;3;15\right\}\)(Đều thỏa mãn ĐK)
Vậy.......
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
#)Giải :
1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)
b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)
a) n + 7 chia hết cho n + 2
n + 2 + 5 chia hết cho n + 2
=> 5 chia hết cho n + 2
=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}
Ta có bảng sau :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
b) 9 - n chia hết cho n - 3
9 - n + 3 - 3 chia hết cho n - 3
9 - (n - 3) - 3 chia hết cho n - 3
6 - (n - 3) chia hết cho n - 3
=> 6 chia hết cho n - 3
=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}
Còn lại giống a
c) n2 + n + 17 chia hết cho n + 1
n.(n + 1) + 17 chia hết cho n + 1
=> 17 chia hết cho n + 1
\(a)\) Gọi phân số cần tìm là \(\frac{-9}{a}\) theo đề bài ta có :
\(\frac{-9}{a}=\frac{3.\left(-9\right)}{a}+10\)
\(\Leftrightarrow\)\(\frac{-9}{a}=\frac{-27+10a}{a}\)
\(\Leftrightarrow\)\(10a-27=-9\)
\(\Leftrightarrow\)\(10a=-9+27\)
\(\Leftrightarrow\)\(10a=18\)
\(\Leftrightarrow\)\(a=\frac{18}{10}\)
\(\Leftrightarrow\)\(a=\frac{9}{5}\)
Đề bài sai
Câu a) tớ ko muốn trình bày nên làm câu b) nhé!
b) Để A có giá trị nguyên thì: 2n + 3 \(⋮\)7n + 6
=> 7.(2n + 3) - 2.(7n + 6) n \(⋮\)7n + 6
=> 14n + 21 - 14n + 12 \(⋮\)7n + 6
=> 33 \(⋮\)7n + 6 => 7n + 6 là Ư(33)
=> ............ (Tự làm)
Ta có:
2n + 9 = 2n + 6 + 3
= 2(n + 3) + 3
Để (2n + 9) ⋮ (n + 3) thì 3 ⋮ (n + 3)
⇒ n + 3 ∈ Ư(3) = {-3; -1; 1; 3}
⇒ n ∈ {-6; -4; -2; 0}
(2n+9) ⋮ (n+3)
Ta có
2n + 9
= 2(n+3)3
Vì 2(n+3)3 ⋮ (n+3)
Suy ra n+3 \(\in\) Ư(3) = {-3,-1,1,3}
Vậy n \(\in\) {0;3}