K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2023

Ta có:

2n + 9 = 2n + 6 + 3

= 2(n + 3) + 3

Để (2n + 9) ⋮ (n + 3) thì 3 ⋮ (n + 3)

⇒ n + 3 ∈ Ư(3) = {-3; -1; 1; 3}

⇒ n ∈ {-6; -4; -2; 0}

26 tháng 12 2023

(2n+9) ⋮ (n+3)
Ta có
2n + 9
= 2(n+3)3
Vì 2(n+3)3 ⋮ (n+3)
Suy ra n+3 \(\in\) Ư(3) = {-3,-1,1,3}

n+3-3-113
n-6-4-20


Vậy n \(\in\) {0;3}

\(a,n+9⋮n+2\)

\(\Rightarrow n+2+7⋮n+2\)

mà \(n+2⋮n+2\Rightarrow n+2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(n\in\left\{-1;-3;5;-9\right\}\)

\(b,2n+7⋮n+1\)

\(\Rightarrow2n+2+5⋮n+1\)

\(\Rightarrow2\left(n+1\right)+5⋮n+1\)

mà \(2\left(n+1\right)⋮n+1\Rightarrow5⋮n+1\)

\(\Rightarrow n+1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)

6 tháng 6 2020

a) *) \(\frac{n-1}{3-2n}\)

Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))

\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)

=> ƯCLN (n-1;3-2n)=1

=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên

*) \(\frac{3n+7}{5n+12}\)

Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)

\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)

\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)

\(\Rightarrow d=1\)

=> ƯCLN (3n+7;5n+12)=1

=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên

6 tháng 6 2020

b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)

\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)

Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên

2 nguyên => \(\frac{7}{n-1}\)nguyên

=> 7 chia hết cho n-1

n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng

n-1-7-117
n-6028

vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên

23 tháng 11 2016

Goi ƯCLN 2n+1 ; 14n+5 là d

\(\Rightarrow\begin{cases}2n+1⋮d\\14n+5⋮d\end{cases}\)

=> 7 ( 2n + 1 ) - ( 14 n + 5 ) ⋮ d

=> 2 ⋮ d

Mà 2n + 1 lẻ

=> d = 1

Vậy ...........

23 tháng 11 2016

BT 18:Chứng minh hai số sau là hai số nguyên tố cùng nhau

:3) 2n + 1 và 14n + 5 với n ∈ N

Gọi d là = (2n+1, 14n+5)

=) 2n+1 chia hết cho d

=)14n+ 5 chia hết cho d

Vì 2n+1 là số lẻ mà d là ước của 2n+1

=) d là số lẻ

Ta có: 7 (2n+1) - (14n+5)

= 14n + 7 - 14n + 5

= 2

Mà 2n+1 lẻ

=) d= 1

Vậy (2n+1, 14n+5) = 1

 

10 tháng 3 2022

\(\frac{2n+9}{n-2}=\frac{2n-4+13}{n-2}=\frac{2.\left(n-2\right)+13}{n-2}=2+\frac{13}{n-2}\)\(\left(ĐKXĐ:n\ne2\right)\)

Để \(\frac{2n+9}{n-2}\)nguyên thì \(2+\frac{13}{n-2}\)nguyên

Mà \(2\in Z\)nên để \(2+\frac{13}{n-2}\)nguyên thì \(\frac{13}{n-2}\)nguyên

Để \(\frac{13}{n-2}\)nguyên thì \(13⋮n-2\)

\(\Leftrightarrow n-2\inƯ\left(13\right)\)

\(\Leftrightarrow n-2\in\left\{-13;-1;1;13\right\}\)

\(\Leftrightarrow n\in\left\{-11;1;3;15\right\}\)(Đều thỏa mãn ĐK)

Vậy.......

10 tháng 3 2022

`Answer:`

\(\frac{2n+9}{n-2}=\frac{2n-4+13}{n-2}=2+\frac{13}{n-2}\)

Để cho phân số đạt giá trị nguyên thì `\frac{13}{n-2}` nguyên

\(\Rightarrow13⋮n-2\Rightarrow n-2\inƯ\left(13\right)=\left\{\pm1;\pm13\right\}\Rightarrow n\in\left\{3;1;-11;15\right\}\)

18 tháng 4 2021

a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)

Ta có : \(2n+5⋮d\)(1) 

\(n+3⋮d\Rightarrow2n+6⋮d\)(2) 

Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)

b, Để  \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi 

\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)

\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

n + 31-1
n-2-4
28 tháng 7 2019

#)Giải :

1.a) Để A là phân số \(\Rightarrow\) -5 không chia hết cho n - 2 \(\Rightarrow n-2\notinƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\notin\left\{\pm3;7;1\right\}\)

b) Để A nguyên \(\Rightarrow-5⋮n-2\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\Rightarrow n\in\left\{\pm3;7;1\right\}\)

26 tháng 1 2017

a) n + 7 chia hết cho n + 2

n + 2 + 5 chia hết cho n + 2

=> 5 chia hết cho n + 2

=> n + 2 thuộc Ư(5) = {1 ; -1 ; 5 ; -5}

Ta có bảng sau :

n + 21-15-5
n-1-33-7

b) 9 - n chia hết  cho n - 3

9 - n + 3 - 3 chia hết cho n - 3

9 - (n - 3) - 3 chia hết cho n - 3

6 - (n - 3) chia hết cho n - 3

=> 6 chia hết cho n - 3

=> n -3 thuộc Ư(o6) = {1 ; -1 ;2 ; -2 ;3 ; -3 ; 6 ; -6}

Còn lại giống a

c) n2 + n + 17 chia hết cho n + 1

n.(n + 1) + 17 chia hết cho n + 1

=> 17 chia hết cho n + 1

15 tháng 4 2018

\(a)\) Gọi phân số cần tìm là \(\frac{-9}{a}\) theo đề bài ta có : 

\(\frac{-9}{a}=\frac{3.\left(-9\right)}{a}+10\)

\(\Leftrightarrow\)\(\frac{-9}{a}=\frac{-27+10a}{a}\)

\(\Leftrightarrow\)\(10a-27=-9\)

\(\Leftrightarrow\)\(10a=-9+27\)

\(\Leftrightarrow\)\(10a=18\)

\(\Leftrightarrow\)\(a=\frac{18}{10}\)

\(\Leftrightarrow\)\(a=\frac{9}{5}\)

Đề bài sai 

Câu a) tớ ko muốn trình bày nên làm câu b) nhé!

b) Để A có giá trị nguyên thì:  2n + 3 \(⋮\)7n + 6 

                              =>  7.(2n + 3) - 2.(7n + 6) n  \(⋮\)7n + 6

                              =>    14n + 21 - 14n + 12     \(⋮\)7n + 6

                              =>          33 \(⋮\)7n + 6 =>    7n + 6 là Ư(33)

                              => ............ (Tự làm)