K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2019

Cách này hơi lâu 1 chút nhưng vẫn ra nhé @@:

2x-2y=256 => 2y.(2x-y-1)=28

Vì x,y nguyên dương mà 2x-256=2y nên x>y suy ra x-y>0

Khi có 2x-y chẵn nên 2x-y-1 lẻ

Mà 2y.(2x-y-1)=28 nên 2x=28 và 2x-y-1 =1

( chố này có thể hiểu là vế phải bằng 2^8 nên khi phân tích vế trái ra thừa số nguyên tố chứa toàn lũy thừa của 2 nên không thể có thừa số lẻ nên suy ra 1 trong 2 thừa số bằng 1)

17 tháng 12 2019

Đù sao chữ ở bài nhỏ thế @@

23 tháng 7 2015

Nếu x = y thì 2x-y = 1 => 2x-y - 1 = 0 => 2y.(2x-y - 1) = 0 < 256 

=> x khác y => 2x-y - 1 là số lẻ

ta có: 2y.(2x-y - 1) = 256 = 28 = 28.1 => 2y = 28 và 2x-y - 1 = 1

=> y = 8 và 2x-y = 2 = 21 => x - y = 1 => x = y + 1 = 8 + 1 = 9

Vậy x = 9 ; y = 8

23 tháng 7 2015

Nếu x = y thì 2x-y = 1 => 2x-y - 1 = 0 => 2y.(2x-y - 1) = 0 < 256 

=> x \(\ne\) y => 2x-y - 1 là số lẻ

ta có: 2y.(2x-y - 1) = 256 = 28 = 28.1 => 2y = 28 và 2x-y - 1 = 1

=> y = 8 và 2x-y = 2 = 21 => x - y = 1 => x = y + 1 = 8 + 1 = 9

Vậy x = 9        ;        y = 8

6 tháng 7 2019

Các bạn trả lời cho mình đi mình sẽ k cho bạn

6 tháng 7 2019

\(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\le0\)        (1)

có :  \(\left(2x-5\right)^{2000}\ge0\forall x\)

\(\left(3y+4\right)^{2002}\ge0\forall x\)

\(\Rightarrow\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\ge0\)     (2)

\(\left(1\right)\left(2\right)\Rightarrow\left(2x-5\right)^{2000}+\left(3y-4\right)^{2002}=0\)

\(\Rightarrow\hept{\begin{cases}\left(2x-5\right)^{2000}=0\\\left(3y+4\right)^{2002}=0\end{cases}\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)

22 tháng 12 2019

2x + 2y = 2x + y

=> 2x + 2y = 2x . 2y

=>   2. 2- 2x - 2y = 0

=> 2x.(2y - 1) - (2y - 1) = 1

=> (2x - 1).(2y - 1) = 1

=> \(\hept{\begin{cases}2^x-1=1\\2^y-1=1\end{cases}\Rightarrow\hept{\begin{cases}2^x=2\\2^y=2\end{cases}\Rightarrow}x=y=1}\)

ta có 2x−512=2y2x−512=2y

⇒2x−2y=512⇒2x−2y=512

⇒2y(2x−y−1)=256⇒2y(2x−y−1)=256

⇒2x>2y⇒2x>2y⇒x>y⇒x>y

⇒2x−y−1lẻ⇒2x−y−1lẻ

⇒2x−y−1=1⇒2x−y−1=1

⇒2y=512⇒y=9⇒2y=512⇒y=9

⇒2x=512+512=1024=210⇒2x=512+512=1024=210

⇒x=10⇒x=10

Vậy x=10 ; y=9

chúc bạn học tốt

5 tháng 12 2018

Đặt: 2x=2k.2y

\(2^x-512=2^y\Leftrightarrow2^x-2^9=2^y\Leftrightarrow2^y\left(2^k-1\right)-512=0\left(k\inℕ,1< k\right);\)

\(\Leftrightarrow2^y\left(2^k-1\right)=512\Leftrightarrow y\ge2\);Ta dễ nhận thấy rằng: 512 chia hết cho 512 mà 2k-1 lẻ  

nên 2x chia hết cho 512

mà: 2x-2y chia hết cho 512 nên 2y cũng chia hết cho 512

+) x=10;y=9=> 210-29=512 (tm)

Với x>10 mà y<x

nên: 2x-2y bé nhất là: 211-210=1024>512 

Vậy: x=10;y=9

DD
12 tháng 3 2022

Vì \(x\)nguyên nên \(\left(x-2005\right)^2\)nguyên. 

Nếu \(\left(x-2005\right)^2=0\Leftrightarrow x=2005\): phương trình ban đầu tương đương với:  

\(y^2-25=0\Leftrightarrow y=\pm5\)

Nếu \(\left(x-2005\right)^2=1\Leftrightarrow\orbr{\begin{cases}x=2006\\x=2004\end{cases}}\), phương trình ban đầu tương đương với: 

\(8+y^2-25=0\Leftrightarrow y=\pm\sqrt{17}\)(không thỏa mãn) 

Nếu \(\left(x-2005\right)^2=2\Leftrightarrow x=2005\pm\sqrt{2}\)(loại) 

Nếu \(\left(x-2005\right)^2=3\Leftrightarrow x=2005\pm\sqrt{3}\)(loại) 

Nếu \(\left(x-2005\right)^2\ge4\)

\(y^2-25=-8\left(x-2005\right)^2\le-8.4=-32\Leftrightarrow y^2\le-7\)(vô nghiệm) 

Vậy các cặp \(\left(x,y\right)\)thỏa mãn là: \(\left(2005,5\right);\left(2005,-5\right)\).